Unit 1
Beaumont Middle School
8th Grade, 2016-2017
Introduction to Algebra

## Simplifying Expressions

- I can identify expressions and write variable expressions.
- I can solve problems using order of operations.
- I can identify types of real numbers and express equivalent numbers for comparison.
- I can evaluate expressions and solve problems by evaluating expressions.
- I can find opposites and absolute values of integers and add integers.
- I can solve problems by subtracting integers.
- I can solve problems by adding \& subtracting integers.
- I can solve problems by multiplying and dividing integers.
- I can combine like terms to simplify variable expressions.
- I can use the distributive property with numerical and variable expressions,



## Variables and Expressions

Objectives: I can identify expressions and write variable expressions.

## Variables

A variable is a symbol that represents a number. Usually we use letters such as $n, t$, or $x$ for variables. For example, we might say that $s$ stands for the side-length of a square. We now treat $s$ as if it were a number we could use. The perimeter of the square is given by $4 * s$. The area of the square is given by $s$ * When working with variables, it can be helpful to use a letter that will remind you of what the variable stands for: let $n$ be the number of people in a movie theater; let $t$ be the time it takes to travel somewhere; let $d$ be the distance from my house to the park.

## Expressions

An expression is a mathematical statement that may use numbers, variables, or both. A variable expression contains at least one variable. A numerical expression contains just numbers.

The following are examples of expressions. Identify each as a numerical expression or variable expression. For each variable expression, name the variable.

2
$3+7$
$2+6(4-2)$
$\qquad$
$x$
$2 y+5$
$z+3(8-z)$

## Translating words into expressions

Certain words can be translated into math operation symbols. Write the correct symbol beside each given word(s). Use +, - , *, or $\div$
less than $\qquad$ times $\qquad$ more than $\qquad$
increased by $\qquad$ product $\qquad$ of $\qquad$
difference $\qquad$ quotient $\qquad$ sum $\qquad$
decreased by $\qquad$ twice $\qquad$ half $\qquad$
total $\qquad$ double $\qquad$ quadruple $\qquad$

## 'Quantity' means use parentheses around the next expression.

For example, 5 times the quantity of 18 minus $h$

Write a variable expression for each word phrase.

1. The sum of 6 and $x$ $\qquad$
2. $m$ multiplied by 11 $\qquad$
3. 13 less $h$ $\qquad$
4. 13 less than $h$ $\qquad$
5. 5 times the sum of $n$ and 8 $\qquad$
6. 16 less than the product of $m$ and -1 $\qquad$
7. $y$ decreased by the product of $y$ and 2 $\qquad$

Write an expression for each quantity.
8. the value in cents of 5 quarters $\qquad$ the value in cents of q quarters $\qquad$
9. the number of days in 3 weeks $\qquad$ the number of days in $w$ weeks $\qquad$
10. the number of hours in 240 minutes $\qquad$ the number of hours in minutes $\qquad$
11. the number of meters in 400 cm $\qquad$ the number of meters in c centimeters $\qquad$
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

## HOMEWORK

Identify each as a numerical expression or variable expression. For each variable expression, name the variable.

1. 4 c
2. $74+8$
3. $\frac{4(9)}{6}$ $\qquad$ 4. $14-r$
4. $25 \mathrm{k}-9$
5. $3+3+3+3$ $\qquad$
6. $19+3(12)$ $\qquad$ 8. $25-8+x$ $\qquad$
Homework is continued on the next page.


## Write an expression for each quantity.

9. the number of inches in 4 feet $\qquad$ the number of inches in $f$ feet $\qquad$
10. the number of months in 7 years $\qquad$ the number of months in $y$ years $\qquad$
11. the number of dollars in 20 dimes $\qquad$ the number of dollars in $d$ dimes $\qquad$
12. the number of yards in 12 feet $\qquad$ the number of yards in $f$ feet $\qquad$

Write a variable expression for each word phrase.
13. 9 less than $k$ $\qquad$
14. $m$ divided by 6 $\qquad$
15. twice $x$ $\qquad$
16. 4 more than twice $x$ $\qquad$
17. the sum of 18 and $h$ $\qquad$
18. three times the quantity 2 plus a $\qquad$
19. six minutes less Bob's time $\qquad$ (make up your own variable for Bob's time)
20. the cost decreased by ten dollars $\qquad$ (make up your own variable for the cost.)
21. the quotient of a number, $n$, and three increased by five $\qquad$

Write a word phrase for each expression. Use words specific to the situation.
Example: The amount of money James saved is dollars.

## a. $d+20$ James earned \$20 <br> b. d-5 James spent \$5

22. The room temperature is $c$ degrees centigrade. (Specific words would be "warmer" \& "colder.")
a. $c+15$ $\qquad$
b. $c-7$ $\qquad$

23. The speed of the race car is $r$ miles per hour. (Use specific "action" words.)
a. $r+20$ $\qquad$
b. $r-12$ $\qquad$

## Order of Operations

Objectives: I can solve problems using order of operations.

Jordan solved the problem $5+4$ * 2 and got the answer of 18 . David solved the same problem and got 13. Can both be correct? Is there only one correct order to perform operations? Who is correct?

| Don't forget the different <br> symbols for <br> multiplication: <br> $5 * 2$ | $5(2)$ |
| :--- | :--- |

$5+4$ * 2

9 * 2
18

$$
\begin{gathered}
5+4 * 2 \\
5+8
\end{gathered}
$$

13

Let's use this acronym to help us remember the order of operations...

## Please

Excuse


P (Level 1)

E(Level 2)

M \& D (Level 3) $\qquad$

A \& S (Level 4) $\qquad$

## Practice

Steps must be shown so that each line of work is equal to the line above.


1. $5 * 10-6 * 2$
2. $24 \div 6$ * 2
3. $3+5(7-5)$
4. $18-5$ * 3
5. $\frac{9+7 * 5}{4}$
6. $2[9(6-4)]+4$
7. $30-2^{3}$
8. $3(14-8)^{2}$
9. $10 * 3^{4}$

## HOMEWORK

Find the value of each expression. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used for this assignment.

1. $50-4 \cdot 5$
2. $(100 \div 5)-6 \cdot 3$
3. $9^{2}+2(8-4)$
4. $16+8$
$3+1$
5. $20 \div 4$ * 5
6. $14-3(20-18)$
7. $54 \div 6-3 \cdot 2$
$10.5+2(6-4)$
8. $\frac{21+3}{8-6}-3^{2}$
9. $[10-(4-1)] \cdot 9$
10. $48 \div 2^{3}$
11. $18-2(8) \div 4$
12. $\frac{5 * 10}{25}+4 \div 2$

## Evaluating Expressions

We have learned that, in an algebraic expression, letters can stand for numbers. When we substitute a specific value for each variable, and then perform the operations, it's called evaluating the expression.

## Evaluating a variable expression

Example 1
Evaluate $18+2 \mathrm{~g}$, for $\mathrm{g}=3$.

| $18+2 g$ | Replace the variable |
| :--- | :--- |
| $18+2^{*} 3$ | Use the order of operations to solve. |
| $18+6$ <br> 24 |  |

## Practice

Evaluate each expression.

## Example 2

Evaluate $2 \mathrm{ab}-\frac{c}{3}$, for $\mathrm{a}=3, \mathrm{~b}=4, \mathrm{c}=9$
$2 \mathrm{ab}-\frac{c}{3} \quad$ Replace the variable
$2 * 3 * 4-\frac{9}{3}$ Use the order of operations
24-3
21

1. $63-5 x$, for $x=7$
2. $4(t+3)+1$, for $t=8$
3. $6(g+h)$, for $g=8 \& h=7$
4. $2 x y-z$, for $x=4, y=3$, and $z=1$
5. $\frac{r+s}{2}$, for $\mathrm{r}=13$ and $\mathrm{s}=11$
6. Becky saves $\$ 125$ each year since her first birthday.
a. Write an expression for Becky's savings after 3 years. $\qquad$
b. Write an expression for Becky's savings after y years $\qquad$
c. Write an expression for when Becky is 14 years old, how much will she have saved? $\qquad$

## ~~Unit 1, Page 8 ~~

## HOMEWORK

Evaluate each expression.

1. $x y$, for $x=3$ and $y=5$
2. $18 a-9 b$, for $a=10$ and $b=5$
3. $24-5 p$, for $p=4$
4. $850-2 \mathrm{~h}$, for $\mathrm{h}=215$

For \#5-8, evaluate if $a=\frac{1}{2}, x=4$, and $y=2$.
5. $a(10-x)$
6. axy
7. $5 x-3 y$
8. $4 x+2(x+3 y)$
10. A tree grows 5 inches in a year.
a. Write an expression for the tree's height after $x$ years.
b. When the tree is 36 years old, how tall will it be? $\qquad$

Evaluate each expression.
11. $\frac{a b}{2}+4 c$, for $\mathrm{a}=6, \mathrm{~b}=5$, and $\mathrm{c}=3$
12. $x(y+5)-z$, for $x=3, y=2$, and $z=7$

Objectives: I can identify types of rational numbers and express equivalent numbers for comparison.

## Rational Numbers

Numbers have different classifications. Some numbers can be classified in multiple ways. A rational number is any number that you can write as a ratio, $\frac{a}{b}$ of two integers, where $b$ is not zero. The diagram below shows relationships among rational numbers.


Always simplify numbers before classifying them. Every whole number is also an integer and a rational number. Every integer is also a rational number.

## Practice

Identify the classification(s) for the following numbers by circling the classification(s) for each.

| 1) 5.8 | Whole Number | Integer | Rational Number |
| :--- | :--- | :--- | :--- |
| 2) 6 | Whole Number | Integer | Rational Number |
| 3) -10 | Whole Number | Integer | Rational Number |
| 4) $0 . \overline{6}$ | Whole Number | Integer | Rational Number |
| 5) $\frac{1}{2}$ | Whole Number | Integer | Rational Number |
| 6) $-\frac{2}{3}$ | Whole Number | Integer | Rational Number |

Express each of the fractions as decimals.

1) $\frac{1}{9}=$ $\qquad$
2) $\frac{2}{9}=$ $\qquad$ 3) $\frac{3}{9}=$ $\qquad$
3) $\frac{4}{9}=$ $\qquad$
4) $\frac{5}{9}=$ $\qquad$
5) $\frac{6}{9}=$ $\qquad$
6) $\frac{7}{9}=$ $\qquad$
7) $\frac{8}{9}=$ $\qquad$
8) $\frac{9}{9}=$ $\qquad$
9) What pattern is shown when the denominator is 9 ? $\qquad$
10) What fraction do you think would be equivalent to $0 . \overline{14}$ ? $\qquad$
11) What fraction do you think would be equivalent to $0 . \overline{128}$ ? $\qquad$
12) What fraction do you think would be equivalent to $0 . \overline{32}$ ? $\qquad$
Check your answers to \#11-13 by changing your fraction to a decimal.

Write the fraction equivalent to each of the following decimal numbers.
14) $-0 . \overline{2}=$ $\qquad$
15) $5 . \overline{3}=$ $\qquad$
16) $0.444444 \overline{4}=$ $\qquad$
17) $-0 . \overline{16}=$ $\qquad$
18) $4 . \overline{124}=$ $\qquad$
19) $0.272727 \overline{27}=$ $\qquad$

Graph the following sets of numbers on a number line. Then list them in order from least to greatest.
20) $\left\{0.6,0.2, \frac{2}{9}, 0 . \overline{4}\right\}$

$\qquad$
21) $\left\{2.9, \frac{21}{10}, 2 . \overline{9}, 3\right\}$

$\qquad$

## HOMEWORK

Identify the classification(s) for the following numbers by circling the correct answer(s).

| 1) -4.5 | Whole Number | Integer | Rational Number |
| :--- | :--- | :--- | :--- |
| 2) -2 | Whole Number | Integer | Rational Number |
| 3) $0 . \overline{8}$ | Whole Number | Integer | Rational Number |
| 4) $-0 . \overline{2}$ | Whole Number | Integer | Rational Number |
| 5) $-\frac{5}{2}$ | Whole Number | Integer | Rational Number |
| 6) 100 | Whole Number | Integer | Rational Number |

Write the fraction equivalent to each of the following rational numbers.
7) $-6 . \overline{1}=$ $\qquad$
8) $0 . \overline{6}=$ $\qquad$
9) $0 . \overline{95}=$ $\qquad$
10) $0.2222 \overline{2}=$ $\qquad$
11) $-0 . \overline{73}=$ $\qquad$
12) $5 . \overline{824}=$ $\qquad$

Graph the following sets of numbers on a number line. Then list them in order from least to greatest.
13) $\left\{1.2,1 \frac{7}{9}, 1 . \overline{2}, 1 \frac{1}{2}\right\}$

$\qquad$
$\qquad$
14) $\left\{\frac{31}{5}, 6 . \overline{5}, 6,6 \frac{2}{9}\right\}$

$\qquad$
$\qquad$

## Review of Lessons 1 through 3

Write an expression for each quantity.
15. the number of cups in 6 quarts $\qquad$ the number of cups in q quarts $\qquad$
16. the number of quarts in 8 cups $\qquad$ the number of quarts in $c$ cups $\qquad$

Write a variable expression for each word phrase.
17. 12 less than $h$ $\qquad$
18. The product of 3 and $f$ $\qquad$
19. twice $z$ $\qquad$ 20. 6 more than twice $w$ $\qquad$

Find the value of each expression. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.
21. $25-4 \cdot 2$
22. $(40 \div 2)-4 \cdot 3$
23. $7^{2}+3(6-4)$

Evaluate if $a=\frac{1}{2}, x=6$, and $y=5$. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.
24. $a(10-x)$
25. axy
26. $5 x-3 y$

Multiple Choice: Circle the letter beside the correct answer.
27) If $k=6$, what is the value of $7 k-2$ ?
A. 30
B. 40
C. 54
D. 65
28) Which expression represents the product of $n$ and 25 ?
A. $25 n$
B. $25-n$
C. $25+n$
D. $25 \div n$
29) Which statement shows twice as much as 8 ?
A. $2+8$
B. 2-8
C. $2 \times 8$
D. $2 \div 8$
A. $12+26=$B. $26-12=\square$
C. $12 \times 26=$
D. $26 \div 12=$

## Real Numbers

Objectives: I can identify types of real numbers and express equivalent or approximate numbers for comparison.

There are more classifications of numbers beyond rational numbers. Some numbers can't be expressed as the ratio of two integers. If this is the case, they are irrational numbers. Rational and irrational numbers together make up real numbers. Irrational numbers do not terminate or repeat when expressed in decimal form. One well known and frequently used irrational number is $\pi$. We are going to explore some other irrational numbers.

Complete the following tables.

Perfect Squares

| $1^{2}$ | $1^{*} 1$ | 1 |
| :---: | :---: | :---: |
| $2^{2}$ | $2^{*} 2$ | 4 |
| $3^{2}$ |  |  |
| $4^{2}$ |  |  |
| $5^{2}$ |  |  |
| $6^{2}$ |  |  |
| $7^{2}$ |  |  |
| $8^{2}$ |  |  |
| $9^{2}$ |  |  |
| $10^{2}$ |  |  |
| $11^{2}$ |  |  |
| $12^{2}$ |  |  |

Perfect Cubes

| $1^{3}$ | $1^{*} 1^{*} 1$ | 1 |
| :---: | :---: | :---: |
| $2^{3}$ | $2^{*} 2^{*} 2$ | 8 |
| $3^{3}$ |  |  |
| $4^{3}$ |  |  |
| $5^{3}$ |  |  |
| $6^{3}$ |  |  |

You can use the tables from left to right to "undo" the square or cube. This is called taking the square root or cube root of a number.

## For example:

$$
\sqrt[2]{16}=4 \quad \sqrt{144}=12 \quad \sqrt[3]{27}=3
$$

Note: The square root is used so frequently, the 2 is just left off. So if there isn't a little number to indicate the root, the square root is implied.

## You try:

1) $\sqrt{49}=$ $\qquad$ 2) $\sqrt[3]{8}=$ $\qquad$ 3) $\sqrt{100}=$ $\qquad$ 4) $\sqrt[3]{125}=$ $\qquad$

Make a conjecture: What if the number isn't on the list? What if you were asked to find $\sqrt{30}$ ? What if you were asked to find $\sqrt[3]{24}$ ?

Use what you know... $\sqrt{30}$ is between $\sqrt{25}$ and $\sqrt{36}$, therefore $\sqrt{30}$ is between 5 and 6 .
$\ldots \sqrt[3]{24}$ is between $\sqrt[3]{8}$ and $\sqrt[3]{27}$, therefore $\sqrt[3]{24}$ is between 2 and 3 .
State the two consecutive integers that the following irrational numbers are in between:

Consecutive: in a row or one following another. For example 2, 3, 4, 5 are consecutive whole numbers.

1) $\sqrt{61}$ is between $\qquad$ and $\qquad$ 2) $\sqrt[3]{118}$ is between $\qquad$ and $\qquad$
2) $\sqrt[3]{100}$ is between $\qquad$ and $\qquad$ 4) $\sqrt{135}$ is between $\qquad$ and $\qquad$
Place the following set of numbers on the Venn diagram to classify the type of number. Then indicate in the table below to which set(s) of numbers it belongs.
$\left\{-12, \sqrt{6},-2.6,0.222 \overline{2},-0 . \overline{2}, \frac{7}{3}, \sqrt{100}, \sqrt[3]{12}\right\}$

3) -12
4) $\sqrt{6}$
5) -2.6
6) $0.222 \overline{2}$
7) $-0 . \overline{2}$
8) $\frac{7}{3}$
9) $\sqrt{100}$
10) $\sqrt[3]{12}$

Whole \#

Integer
Rational \#

Rational \#
Rational \#
Rational \#
Rational \#

Irrational \#
Irrational \#
Irrational \#
Irrational \#
Irrational \#
Real \#
Real \#
Real \#
Real \#

Real \#

Real \#
Real \#
Real \#

## HOMEWORK

Place the following set of numbers on the Venn diagram to classify the type of number. Then indicate in the table below to which set(s) of numbers it belongs.
$\left\{6 \frac{2}{5}, \sqrt[3]{125}, \sqrt{50},-\frac{3}{4}, 7.2 \overline{3},-8, \frac{15}{3}, \sqrt[3]{25}, 0, \pi\right\}$


1) $6 \frac{2}{5}$

Whole \#
Integer
Rational \#
Irrational \#
Real
2) $\sqrt[3]{125}$

Whole \#
Integer
Rational \#
Irrational \#
Real
3) $\sqrt{50}$

Whole \#
Integer
Rational \#
Irrational \#
Real
4) $-\frac{3}{4}$

Whole \#
Integer
Rational \#
Irrational \#
Real
5) $7.2 \overline{3}$

Whole \#
Integer
Rational \#
Irrational \#
Real
6) - 8 Whole \#

Integer
Rational \#
Irrational \#
Real
7) $\frac{15}{3}$

Whole \#
Integer
Rational \#
Irrational \#
Real
8) $\sqrt[3]{25}$

Whole \# Integer
9) 0

Whole \#
Integer
10) $\pi$

Whole \#
Integer
Rational \#
|rrational \#
Real
Rational \#
Irrational \#
Real
Rational \#
Irrational \#
Real

Simplify.
11) $\sqrt{25}=$ $\qquad$ 12) $\sqrt[3]{64}=$ $\qquad$ 13) $\sqrt{64}=$ $\qquad$ 14) $\sqrt[3]{1}=$ $\qquad$ 15) $\sqrt{1}=$ $\qquad$

State the two consecutive integers that the following irrational numbers are in between:

1) $\sqrt{20}$ is between $\qquad$ and $\qquad$ 2) $\sqrt[3]{40}$ is between $\qquad$ and $\qquad$
2) $\sqrt[3]{134}$ is between $\qquad$ and $\qquad$ 4) $\sqrt{96}$ is between $\qquad$ and $\qquad$
3) Plot and label the following numbers to their correct places on the number line to the right.

$$
\frac{4}{3},-\frac{2}{3}, \sqrt{4}, \sqrt{8}
$$



## Multiple Choice: Circle the letter beside the correct answer.

6) Which statement is correct?
A. All integers are rational numbers.
B. All irrational numbers are whole numbers.
C. A real number must be a rational number.
D. A repeating decimal is an irrational number.
7) Which number is irrational?
A. $(1.5)^{2}$
B. $\sqrt{41}$
C. $\sqrt{49}$
D. $(15)^{2}$
8) Which point on the number line shows the best estimate of the irrational number below?

A. $P$
B. Q
C. R
D. S
9) Which set below includes only irrational numbers?
A. $\{-\sqrt{12},-3.7 \overline{6}, \sqrt{36}, 4.3858 \ldots\}$
B. $\{-7.2322 \ldots, \sqrt{5}, \sqrt{15}, 8.27451 \ldots\}$
C. $\{-5.6, \sqrt{14}, 6.3 \overline{245}, \sqrt{81}\}$
D. $\{-\sqrt{8}, .3 \overline{7}, 3.265165065 \ldots, \sqrt{90}\}$
10) Which expression shows the first step in finding the value of $6+3(5-2)^{2}$ ?
A. $6+3(3)^{2}$
B. $9(5-2)^{2}$
C. $6+(15-2)^{2}$
D. $6+3(25-4)$
11) Which operation should be performed first in the expression

$$
18-2+5 \times(16+66 \div 2) ?
$$

A. $2+5$
B. $5 \times 16$
C. $16+66$
D. $66 \div 2$

## Review of Lessons 1 through 4

Write the fraction equivalent for each decimal representation of the following rational numbers.
12. a) 0.6 $\qquad$
b) $0 . \overline{6}$ $\qquad$ c) $2 . \overline{6}$ $\qquad$
13. a) 3.1 $\qquad$ b) $3 . \overline{1}$
c) $-3 . \overline{1}$ $\qquad$
14. a) -17.2 $\qquad$
b) $-17 . \overline{2}$ $\qquad$
c) $\mathbf{1 7 . \overline { 2 2 }}$ $\qquad$
Write an expression for each quantity.
15. the number of days in 6 weeks $\qquad$ the number of days in $w$ weeks $\qquad$
16. the number of weeks in 72 days $\qquad$ the number of weeks in $d$ days $\qquad$

Write a variable expression for each word phrase.
17. 5.2 more than $f$ $\qquad$ 18. The product of $\frac{3}{5}$ and $p$ $\qquad$
19. 8 less $u$ $\qquad$ 20. 6 less than twice $x$ $\qquad$

Find the value of each expression. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.
21. $2+4(30-20)$
22) $6+(2) \sqrt{81}$
23. $\frac{3+5^{2}}{8-6}$


Evaluate if $a=10, x=\frac{1}{3}$, and $y=6$. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.
24. $5+a(8-y)$
25. $a x y$
26. $12 x+2 y$

## Adding Integers <br> (Absolute Value and Opposites of Integers)

Objectives: I can find opposites and absolute values of integers and add integers.

## absolute value

The distance of a number from zero; the positive value of a number.
Two parallel lines around a number or expression mean "the absolute value."
For example: $|-4|=4 \quad|8|=8 \quad|0|=0$

## opposites

Two numbers that lie the same distance from 0 on the number line but in opposite directions.
For example: The opposite of 2 is $-2 \quad$ The opposite of -5 is 5 .
A negative sign in front of a number or variable means "the opposite of."
Therefore, $-(-9)=9$


Write an integer for each situation.

1. Lose $\$ 7$ $\qquad$
2. $8^{\circ} \mathrm{C}$ below zero $\qquad$
3. 5 floors down $\qquad$ 6. Deposit of $\$ 150$ $\qquad$
4. Profit of $\$ 40$ $\qquad$ 8. Borrowed \$6 $\qquad$
Compare. Use >, < or = to complete each statement.
5. -4 $\square$
6. $|-4|$ $\square$ $|-5|$
7. -7 $\square$ $|4|$

Notes about adding integers...

More notes...

## Practice Applying Rules of Addition

Find each sum.
$1.9+(-12)=$
2. $-4+10=$ $\qquad$
3. $-1+(-8)=$ $\qquad$
4. $-6+(-11)=$ $\qquad$
5. $-5+15=$ $\qquad$
6. $2+(-14)=$ $\qquad$
7. $1+(-3)+2+(-10)=$ $\qquad$
8. $-12+(-6)+15+(-2)+5=$ $\qquad$

## HOMEWORK

Graph each set of numbers on a number line. Then order the numbers from least to greatest. (On \#3 and 4, you have to write your own numbers under the number lines.)

1. $-4,-7,3$
2. $3,-3,-2$

least to greatest: $\qquad$ least to greatest: $\qquad$
3. $0,-6,-4$

4. $-7,-1,-3$

least to greatest: $\qquad$ least to greatest: $\qquad$
Homework is continued on the next page.

```
~~ Unit 1, Page 20 ~ 
```


## Write an integer to represent the quantity.

5. 5 degrees below zero $\qquad$
6. $2,000 \mathrm{ft}$ above sea level $\qquad$
7. a loss of 12 yd $\qquad$ 8. 7 strokes under par $\qquad$
Simplify each expression.
8. the opposite of -15 $\qquad$ 10. $|-9|$ $\qquad$
9. |25| $\qquad$
10. $-|-3|$ $\qquad$
11. $-(-2)$ $\qquad$
12. the opposite of $|8|$ $\qquad$
13. |847| $\qquad$
14. The opposite of 4 $\qquad$
Write the integer represented by each point on the number line.

15. A $\qquad$ 18. B $\qquad$ 19. C $\qquad$

Compare. Use >, <, or = to compare each statement,
20. -3

21.5 $\square$
22. -7 $\square$ $-6$
23. 7 $\square$ |8|
24. $|-2|$ $\square$ 4
25. $|-1|$ $\square$ -6
26. |4| $\square$ $|-5|$
27. 0 $\square$$|-7|$

Write a numerical expression for each of the following. Then find the sum.
28. climb up 26 steps, then climb down 9 steps $\qquad$
29. earn $\$ 100$, spend $\$ 62$, earn $\$ 35$, spend $\$ 72$ $\qquad$
Find each sum.
30. $-8+(-3)$ $\qquad$ 31. $6+(-6)$ $\qquad$ 32. $-12+(-17)$ $\qquad$
33. $9+(-11)$ $\qquad$ 34. $-4+(-6)$ $\qquad$ 35. $18+(-17)$ $\qquad$
36. $-8+8+(-11)$ $\qquad$ 37. $-15+7+15$ $\qquad$ 38. $12+(-7)+3+(-8)$ $\qquad$

Homework is continued on the next page.


## Multiple Choice: Circle the letter beside the correct answer.

39) What is the coordinate of point $A$ ?

A. -3
B. -1
C. 1
D. 4
40) Look at the number line.


What point shows the location of -6 on the number line?
A. Point $P$
B. Point $Q$
C. Point $R$
D. Point $S$
41) Which point is located closest to $-\frac{7}{10}$ on the number line below?

A. $W$
B. $X$
C. $Y$
D. $z$
42) The three running backs on the Thunderbolts football team ran for the following yardage in the last game:

Thibeaux: $-3,5,10,-5,-2,1,13$
Walker: 4, 3, -1, 2, -1, 4, 5
Smith: -2, 5, -5, 4, 22, 1, -3
Which running back had the most yards gained?
A. Thibeaux
B. Walker
C. Smith
D. No player had more yards gained than either of the others.
43) The lowest elevations for five states are recorded in the table below.


Which of the following lists the numbers in the table in order from least to greatest?
A. $-282,-8,-2,0,55$
B. $-282,55,-8,-2,0$
C. $0,-2,-8,55,-282$
D. $0,55,-2,-8,-282$
44) What is equal to $\sqrt[3]{27}$ ?
A. $\frac{3}{27}$
B. 3
C. $\frac{24}{3}$
D. 9
45) Between which two consecutive integers is the value of this irrational number?

$$
\sqrt{117}
$$

A. 8 and 9
B. 10 and 11
C. 14 and 15
D. 20 and 21
46) Label the following numbers to their correct places on the number line below.

$$
\frac{1}{3},-\frac{5}{3},-\sqrt{4}, \sqrt{5}
$$


47) Which of the following is a square number?
A. 10
B. 24
C. 36
D. 55

Objectives: I can solve problems by subtracting integers.

## Subtracting Integers

$$
\begin{aligned}
& 8+(-2)=6 \\
& 8-2=6
\end{aligned}
$$

Let's not have to memorize a bunch of rules! Subtracting integers just requires you to add the opposite. Change the subtraction sign to addition; change the sign of the next number. (Never change the number before the subtraction sign.)

Examples: $10-(-4)=$
$-6-5=$
$3-9=$
$-6+(-5)=-11$
$3+(-9)=-6$
$10+(+4)=14$
Practice Rewrite the subtraction problems below as addition problems, then solve.

1) $-7-3$ $\qquad$
2) $12-23$
3) $15-(-3)$ $\qquad$
4) $-28-(-8)$ $\qquad$
5) $-2-98$
6) $-63-(-12)$ $\qquad$
7) $14-(-9)$ $\qquad$
8) $-4-15$ $\qquad$
9) $5-8-(-4)$ $\qquad$
10) $-2-5-(-7)$ $\qquad$

Write a numerical expression for each situation and then simplify.
11) Terry has $\$ 43$ in a checking account. If Terry writes a check for $\$ 62$, what is the new account balance?
12) Suppose you score 35 points in a game but then you get a 50 point penalty. What is your new score?

Evaluate each expression if $m=-2, n=3$, and $p=-6$.
13) $m-p$
14) $p-n-m$
15) $2 n-m$

## Homework

Rewrite the subtraction problems below as addition problems, then solve.

1) $8-12$ $\qquad$
2) $13-6$ $\qquad$ 3) $9-(-13)$ $\qquad$
3) $60-39$ $\qquad$
4) $-28-90$ $\qquad$
5) $70-(-12)$ $\qquad$
6) $84-(-9)$ $\qquad$
7) $40-15$ $\qquad$ 9) $5-28$ $\qquad$
8) $-80-120$ $\qquad$
9) $36-(-50)$ $\qquad$
10) $-75-(-5)$ $\qquad$
11) $-70-(-4)-6$ $\qquad$
12) $35-(17)-20$ $\qquad$
Evaluate each expression if $a=-4, b=10$, and $c=-2$
13) $a-b$
14) $b-c$
15) $a-c$
16) $a-b-c$
17) $a-2 b$
18) $a-c-3$

Write a variable expression for each word phrase.
21) 7 less than m $\qquad$ 22) the product of a number and 9 $\qquad$
23) the total of 5 and $c$ $\qquad$ 24) a number increased by 11 $\qquad$
25) twice as many points as Bob $\qquad$ 26) the price decreased by $\$ 4$ $\qquad$
27) 15 years older than Tom $\qquad$ 28) 3 times as many dimes $\qquad$
Multiple Choice: Circle the letter beside the correct answer.
29) The temperature on Monday was $-23^{\circ} \mathrm{F}$. The temperature on Tuesday was $18^{\circ}$ higher. What was the temperature on Tuesday?
A. $-41^{\circ} \mathrm{F}$
B. $-5^{\circ} \mathrm{F}$
C. $5^{\circ} \mathrm{F}$
D. $41^{\circ} \mathrm{F}$

Objectives: I can solve problems by adding \& subtracting integers.

## Adding \& Subtracting Integers

Don't forget how to add integers now that we know how to subtract!

## Rules for adding integers:

If the signs are the same: $\qquad$

If the signs are different: $\qquad$
$\qquad$

## Rule for subtracting integers:

## Practice

Solve.

1. $-6-(-2)$ $\qquad$ 2. $5+-3$ $\qquad$ 3. $3+-5$ $\qquad$
2. $-2+-3$ $\qquad$
3. $5-(-1)$ $\qquad$
4. $-1+1$ $\qquad$
5. $3+-10$ $\qquad$
6. $-20+21$ $\qquad$
7. -6-4 $\qquad$
8. $4-(-3)$ $\qquad$
9. $-9-(-6)$ $\qquad$
10. $5-12$ $\qquad$
11. $-4-9$ $\qquad$
12. $-2-10+(-4)$ $\qquad$
13. $10+(-6)-15-(-6)$ $\qquad$ 16. $-2-6+(-1)-(-3)$ $\qquad$

Evaluate if $a=2, b=-6$ and $c=10$
17. $a-b+c$
18. $c-b-a$
19. $a-b-2 c$

Homework is continued on the next page.


## Homework

Solve. You must show changing subtraction to adding the opposite.

1. $4-50$ $\qquad$
2. $-4-(-72)$ $\qquad$ 3. $-4+-85$ $\qquad$
3. $3-(-97)$ $\qquad$
4. $60-(-6)$ $\qquad$
5. $5-86$ $\qquad$
6. $3+10$ $\qquad$
7. $-20+20$ $\qquad$
8. $-2-60$ $\qquad$
9. $-6-(-70)$ $\qquad$
10. $-7-(-52)$ $\qquad$
11. $-8+(-31)$ $\qquad$
12. $-12-13+(-5)$ $\qquad$ 14. $16+(-8)-16-(-3)$ $\qquad$
13. $28-3+(-6)-(-14)$ $\qquad$ 16. $-24+5-(-5)-6+15$ $\qquad$

Evaluate if $a=-2, b=8, c=10$ and $d=-10$. Show all work.
17. $c+d$
18. $a-d$
19. $a-b$
20. $a+b$
21. $c-d$
22. $a+d$
23. $a-b+d$
24. $d-a+2 b$
25. $a+c+d$
26. $a-b+c-d$
27. $a+c-d$
28. $a+b-2 c+d$

Multiple Choice: Circle the letter beside the correct answer.
29. What is the absolute value of the coordinate of the point shown on the number line?

A. -4
B. -3
C. 3
D. 4
30. Chanler placed parentheses in the expression $4 * 8+2$ and calculated the answer to be 40. Which of the following expression shows where Chris placed the parentheses?
A. $4 * 8+(2)$
B. $(4 * 8)+2$
C. $4 *(8+2)$
D. $(4 * 8+2)$

Objectives: I can combine like terms to simplify variable expressions.

## Combining Like Terms

In an expression, the terms are the elements separated by the plus or minus sign. A coefficient is the number being multiplied by a variable.
Like terms have the same variables).

3 a


$$
2 x+3 y+4 x-5 y
$$

$2 x$ and $4 x$ are like terms.
$3 y$ and $-5 y$ are like terms.
You can add like terms by adding their coefficients.

$$
2 x+4 x=6 x \quad \text { and }
$$

$$
3 y+(-5 y)=-2 y
$$

So you can simplify $2 x+3 y+4 x-5 y=\underline{6 x+-2 y}$

## Practice

Problem 1. $2 x+3 y+z$
a) What number is the coefficient of $x$ ? $\qquad$
b) What number is the coefficient of $y$ ? $\qquad$
c) What number is the coefficient of $z$ ? $\qquad$


Problem 2. $5 x-4 y-z$ (hint: change the subtraction to plus the opposite)
a) What number is the coefficient of $x$ ? $\qquad$
b) What number is the coefficient of $y$ ? $\qquad$
c) What number is the coefficient of $z$ ? $\qquad$

Problem 3. Add like terms.
a) $6 x+2 x$ $\qquad$ b) $6 x-2 x$ $\qquad$ c) $5 x+x$ $\qquad$
d) $5 x-x$ $\qquad$ e) $-4 x+5 x$ $\qquad$ f) $4 x-5 x$ $\qquad$
g) $-5 x-3 x$ $\qquad$ h) $-x-x$ $\qquad$
i) $-7 x-(-7 x)$ $\qquad$
j) $-3 x-4+2 x+6$ $\qquad$
k) $x-2-4 x-5$ $\qquad$
I) $4 x+y-2 x+3 z$ $\qquad$ m) $3 x-y-8 x+2 y$ $\qquad$

## Homework

Identify how many terms are in each expression. (Do NOT simplify.)

1) $2 x+3 z-5$ $\qquad$ 2) $3 x$ $\qquad$
2) $4 c-7 g$ $\qquad$ 4) $10+6 p-5 y+4 u$ $\qquad$
3) $4 k-9$ $\qquad$ 6) $5 d+8-6 y+w$ $\qquad$

For each expression name the coefficient and the constant.
7) $-4 x+5$ Coefficient $\qquad$ Constant $\qquad$
8) $2 y$ Coefficient $\qquad$ Constant $\qquad$
9) 9h-6 Coefficient $\qquad$ Constant $\qquad$
10) -3

Coefficient $\qquad$ Constant $\qquad$
Simplify.
11) $2 x+5 y+9 x$ $\qquad$ 12) $a+9 b+6 a$ $\qquad$
13) $2 p+3 q-5 p+2 q$ $\qquad$ 14) $\frac{3}{4} x+z+\frac{1}{4} x$ $\qquad$
15) $3 j+4 k-2 f+6 k$ $\qquad$ 16) $1.4 \mathrm{~h}-5+3 \mathrm{~h}$ $\qquad$
17) $4 s+(-7 t)-2 t+3 s$ $\qquad$ 18) $4 u-6+(-10 u)-2$ $\qquad$
19) $a+b-a+b$ $\qquad$ 20) $2-4 w+12 w$ $\qquad$
Choose the correct answer for each multiple choice question.
21) If $a+b=c$, then which of the following is true?
A. $b-c=a$
B. $a=b+c$
C. $\quad b^{*} a=c$
D. $b+a=c$
22) Simplify: $16 x-8-10 x+15$
A. $\quad 6 x+7$
B. $26 x+23$
C. $(-26) x-23$
D. $(-6) x+7$
23) Identify the correct variable expressions for the following phrase:

How many months are in $x$ years?
A. $12-\mathrm{x}$
B. $12+\mathrm{x}$
C. $x \div 12$
D. $12 x$


## Review of Lessons 1 through 6

Write the fraction equivalent for each decimal representation of the following rational numbers.
24. a) 0.7 $\qquad$
b) $0 . \overline{7}$ $\qquad$ c) $4 . \overline{7}$ $\qquad$
25. a) 2.4 $\qquad$
b) $2 . \overline{4}$ $\qquad$ c) $-2 . \overline{4}$ $\qquad$

Write an expression for each quantity.
26. the number of meters in 3 kilometers $\qquad$ the number of meters in $k$ kilometers $\qquad$
27. the number of yards in 15 feet $\qquad$ the number of yards in $f$ feet $\qquad$

Write a variable expression for each word phrase.
28. 8.7 less than $f$ $\qquad$ 29. The sum of $\frac{2}{9}$ and $t$ $\qquad$
Find the value of each expression. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.
30. $-4-8+6$
31. $3-[4+(6-9)]$
32. $\frac{-2+4^{2}}{5+2}$

Evaluate if $a=2, x=\frac{1}{5}$, and $y=10$. You must show work as demonstrated in class. Each line should equal the line above. A calculator should NOT be used.
33. $5+a(14-y)$
34. $a x y$
35. $15 x+3 y$

Simplify.
36. $-3+8$ $\qquad$ 37. 2 - (-10) $\qquad$ 38. $-4-8$ $\qquad$
39. $5 w-12 w$
40. $-7 y-(-10 y)$ $\qquad$ 41. $-9 t+8 t+10$ $\qquad$

Objectives: I can solve problems by multiplying and dividing integers.

## Multiplying and Dividing Integers

## Rules for multiplying \& dividing integers:

If the signs are the same: $\qquad$
If the signs are different: $\qquad$

## Practice

Solve.


1. -6 * $(-2)$ $\qquad$ 2. 5 * -3 $\qquad$ 3. $3^{*}-5$ $\qquad$
2. -2 * -3 $\qquad$
3. $5 \div(-1)$ $\qquad$
4. $-24 \div-3$ $\qquad$
5. 3 (-10) $\qquad$ 8. $\frac{-36}{-9}$
6. $-6 \cdot 4$ $\qquad$
7. -2 * 10 * (-4) $\qquad$ 11. $10(-6)(-2)(5)$ $\qquad$ 12. $\frac{54}{-6}$ $\qquad$

## Homework

Find each product or quotient.

1. 4 * (-12) $\qquad$ 2. $-24 \div(-6)$ $\qquad$ 3. 8 (-6) $\qquad$
2. $\frac{-15}{5}$ $\qquad$
3. $-4 \cdot(-7)$ $\qquad$
4. $-12 \div 2$ $\qquad$
5. -5 * 8 $\qquad$
6. $\frac{-34}{-34}$
7. $7 \cdot(-6)$ $\qquad$
8. $-25 \div 5$ $\qquad$ 11. $-6(-15)$ $\qquad$ 12. $\frac{10}{-2}$ $\qquad$
9. $-7^{*}-3$ $\qquad$
10. $12 \div 2$ $\qquad$
11. $7 \cdot-11$ $\qquad$
12. $-80 \div(-8)$ $\qquad$
13. 30 * (-6) $\qquad$
14. $\frac{-50}{5}$
$\qquad$
15. -10 * 2 * (-3) $\qquad$ 20. $-50 \div 10$ * $(-5)$ $\qquad$

Evaluate if $w=-2, x=-10, y=16, \& z=8$.
21. $w x$
22. $w x y$
23. $\frac{z}{w}$
24. $x y$

Homework is continued on the next pages with an ERQ. (Write your answer on the grid provided.)



## JAMES, JACKSON AND RACHAEI'S COMPUTATION

Read all parts of the extended-response question before you begin. Write your answers to the extended-response question on the answer page. For each extended-response question, use the grid provided to create any required charts or graphs. If a question does not require a chart or graph, write your written response over the grid lines.

James, Jackson, and Rachael solved the following problem:

$$
-20-5+3^{2} \cdot 4
$$

James's response was 11, Jackson's response was -1 and Rachael's response was -76 .
a. Whose response is correct? Correctly calculate the answer showing all work and justifying your reasoning.
b. Create a new problem using at three different operations using only the numbers $-3,5,-7,15$. The answer must be an integer.
c. Solve the problem you created. Show the steps to the solution.

## BE SURE TO LABEL YOUR RESPONSES (a), (b), AND (c).

## RUBRIC

| Part a | $11 / 2$ points <br>  <br> Part b | for correctly identifying whose response is correct and <br> accurately showing all work. <br> $1 / 2$ point for accurately stating whose answer is correct. |
| :--- | :--- | :--- |
| Part c | 1 point | for creating a new problem using directions in part b. |
|  | 1 point <br> $1 / 2$ points for correct solution with no work shown. | for accurately showing all work with correct solution. <br> for showing all work with minor calculation error |
|  |  |  |


| You earned: | Your score is: | Your grade will reflect: |
| :--- | :--- | :--- |
| 4 points | 4 (A score of 4 is only possible if accurate <br> mathematical vocabulary is used.) | $10 / 10$ points |
| $3.0-3.5$ points | 3 | $9 / 10$ points |
| $2.0-2.5$ points | 2 | $7.5 / 10$ points |
| $0.5-1.5$ points | 1 | $5 / 10$ points |
| 0 points | 1 -- your answers demonstrates minimal <br> understanding <br> OR <br> $0--~ y o u r ~ a n s w e r ~ i s ~ i r r e l e v a n t ~$ | $1 / 10$ points for an honest effort <br> points for a blank |

~~ Unit 1, Page 31 ~

Do not write outside this box.

## Distributive Property

I can use the distributive property with numerical and variable expressions,

According to the Distributive Property, you distribute or "pass out" a multiplication to each part of a sum or difference in parentheses.
In $2(a+3)=2 a+6$, we "pass out" the 2 by multiplying it by both the $a$ and the 3 .


Look at the examples, and then try the other problems.

Arithmetic
Order of Operations
$3(2+6)$
3(8)
24

Order of Operations
$7(6-4)$
$7(2)$
14

Distributive property

$$
\begin{aligned}
& 3(2+6) \\
& 3(2)+3(6) \\
& 6+18 \\
& 24
\end{aligned}
$$

## Algebraic

$$
4(b+3)
$$

$$
4(b)+4(3)
$$

$$
4 b+12
$$

Distributive property

$$
\begin{aligned}
& 7(6-4) \\
& 7(6)-7(4) \\
& 42-28 \\
& 14
\end{aligned}
$$

$$
-2(x+4)
$$

With numerical expressions, whether you solve using the distributive property or using the correct order of operations, you get the same solution.

| Order of Operations | Distributive property | Order of Operations | Distributive property |
| :--- | :--- | :--- | :--- |
| $5(4+1)$ | $5(4+1)$ | $-2(3+4)$ | $-2(3+4)$ |

Sometimes, we need to use the distributive property to simplify variable expressions. We will simplify these together.
$5(t+1)$
$-2(y+4)$
$3(-2 r+7)$
$-6(2-7 g)$
$(3 v-4) 9$

## Practice

Use the distributive property to simplify.

1. $4(j+10)$ $\qquad$
2. $7(4 n-6)$ $\qquad$
3. $-2(-g-4)$ $\qquad$
4. $(4 c+2) 3$ $\qquad$
5. $6(-2 p+7)$ $\qquad$
6. $5(2 r-4)$ $\qquad$

## Homework

Simplfy using order of operations and then solve using the distributive property.

Order of Operations
Distributive property

1. $3(-4-8) \quad 3(-4-8)$
2. $3(-4-8)$
(
者

Distributive property
2. $-6(-5+8)$
$-6(-5+8)$

Use the distributive property to simplify.
3. $3(x+4)$
5. $-2(y+8)$ $\qquad$
4. $-7(t-3)$ $\qquad$
7. $8(-x+7)$ $\qquad$
6. $-4(-y+3)$ $\qquad$
9. $(x+4) 2$ $\qquad$
8. $11(4 x+3)$ $\qquad$
11. $-3(1-2 k)$ $\qquad$
10. $3(-2 b-8)$ $\qquad$
12. $(-2 s+9) 6$ $\qquad$
13. $10(3 a-6)$ $\qquad$ 14. $\frac{1}{2}(-6 x+14)$ $\qquad$

## Review

Combine like terms to simplify.
13. $5 a+a$ $\qquad$
14. $6 x+3 y+6 y-2 x$ $\qquad$
15. $18+7 x-12-7 x$ $\qquad$ 16. $10 r+100 s+50 t$ $\qquad$
17. $3 r+4-5-2 r$ $\qquad$ 18. $12+2+3 x-12-5 y+7 z-10 x$ $\qquad$
Homework is continued on the next page.

19. For each expression name the coefficient and the constant.
a) $\mathbf{- 4 + 5 x}$ Coefficient $\qquad$ Constant $\qquad$
b) 10

Coefficient $\qquad$ Constant $\qquad$
c) 6h-7 Coefficient $\qquad$ Constant $\qquad$
d) $-6 x$

Coefficient $\qquad$ Constant $\qquad$
20. Place the following set of numbers on the Venn diagram to classify the type of number. Then indicate in the table below to which set(s) of numbers it belongs.
$\left\{\sqrt{25}, \frac{2}{5},-\frac{8}{2}, \sqrt[3]{9}, 2 . \overline{6},-7, \pi,-\sqrt{8}\right\}$


Objectives: I can use the distributive property with numerical and variable expressions.

## Distributive Property with Mental Math

Notes
You can use the distributive property to help with mental math.

| $6(31)$ | $7(49)$ | $9(102)$ | $3(88)$ |
| :--- | :--- | :--- | :--- |
| $6(30+1)$ | $7(50-1)$ |  |  |
| $180+6$ | $350-7$ |  |  |
| 186 | 343 |  |  |

Practice
Use the distributive property to solve with mental math.

1. 5(39)
2. $7(51)$
3. 4 (38)
4. $9(62)$

Notes
You can use the distributive property to multiply mixed numbers.
$12\left(2 \frac{1}{3}\right)$
$5\left(3 \frac{2}{11}\right)$
$7\left(5 \frac{2}{7}\right)$
$4\left(5 \frac{1}{2}\right)$
$12\left(2+\frac{1}{3}\right)$
$5\left(3+\frac{2}{11}\right)$
$24+4$
$15+\frac{10}{11}$
28
$15 \frac{10}{11}$

## Practice

Use the distributive property to multiply mixed numbers..

1. $8\left(2 \frac{1}{4}\right)$
2. $3\left(4 \frac{3}{10}\right)$
3. $2\left(7 \frac{2}{5}\right)$

## Combining Like Terms and The Distributive Property

The following examples involve both the Distributive Property and combining like terms.
$5(2 x+8)-7$
1st: Distribute the \#outside the ( )
just to the terms inside the ( ).
2nd: Combine like terms
$4+2(-x-8)$
$-3(5 x-9 y)+15 x$
$10 x+\underline{40}-7$
$10 x+33$

## Homework

## Part 1: Using the distributive property to simplify numerical expressions.

Use the distributive property to solve.

1. 4 (91)
2. $8(79)$
3. 7(103)
4. 6(58)
5. $8\left(4 \frac{1}{2}\right)$
6. $6\left(5 \frac{1}{3}\right)$
7. $2\left(4 \frac{2}{5}\right)$

## Part 2: Combining Like Terms and The Distributive Property

Combine like terms to simplify each expression.

1. $-4 x+9 x+3$
2. $5 x-(-3 x)$
3. $-8 n-(-2 n)-7$
4. $6 n+(-5 n)-4$
5. $-4 x+9 x+3$
6. $-3 x+x+7+4 x$
7. $9-6 n-(-5 n)-(-8)$
8. $-8 x+(-5)+(-x)-1$
9. $-2 y+7-(-y)+9 y$
10. $13 u+5+9-(-u)$
11. $-w-(-10 w)$
12. $-k+(-10 k)+(-4)-(-1)$

Use the Distributive Property to write each expression as an equivalent algebraic expression.
13. $7(x+2)$
14. $5(b-8)$
15. $(q+9) 4$
16. $3(c-6)$
17. $(m-2) 10$
18. $-12(d+14)$
19. $-18(n-10)$
20. $-5(h+48)$

21. Standardized Test Practice Use the Distributive Property to write an equivalent algebraic expression for $-22(x-y+z-13)$.
A $22 x+22 y-22 z+286$
B $-22 x-y+z-13$
C $-22 x-22 y-22 z-286$
D $-22 x+22 y-22 z+286$

Use the Distributive Property and then combine like terms to simplify each expression.
22. $5(r+2)+7 r$
23. $5(x+5)+2 y$
24. $3(r+2 s)-3 r$
25. $6 x+7(y+x)$
26. $35 a+5 n+2(n-1)$

## Review

Find the value of each expression. You must show work as demonstrated in class; each line should equal the line above.

1. $-50-4 \cdot 5$
2. $(100 \div-5)-6 \cdot-3$
3. $6^{2}+2(-8-4)$
4. $\frac{-8-12}{-7+5}$
5. $-3(-6+4)^{3}$
6. $-2[50+8(-2+-3)]$
7. $20 \div 4 *(-5)$
8. $-14+3(-20+18)$
9. $54 \div-6-3 \cdot-2$

Objective: I can write and simplify numerical and variable expressions.

Simplify.

1) $|17|=$ $\qquad$
2) $|-2|=$ $\qquad$
3) $|0|=$ $\qquad$

Choose the correct symbol to make a true sentence ( $>,<$, or $=$ ).
4) -5 $\qquad$ 3
5) $-8 \_-20$
6) $|5|^{\ldots}$
7) Order the set $\{58,-6,22,-1,-15,5,0\}$ from least to greatest.
$\{$, $\qquad$ , $\qquad$ , $\qquad$ \}
8) Graph the following numbers on a number line: $1,-3,-2,4$

## Simplify. Don't make careless errors.

9) $9+(-3)$
10) $-14+(-5)$
11) $\frac{36}{-6}$
12) 6 - (-4)
13) $-8-2$
14) $-3^{*}-5$
15) $-10+6(-4)$
16) $(5+-8)(-4)$
17) $-8+(-5)-8$
18) $4-2-7$
19) $-8-2(-5-6)$
20) $-20 \div 5 * 2$

Evaluate if $m=-5, n=2, p=-2, r=4$
21) 3 m
22) $n-p$
23) $-m+2 p r$
24) $3 r^{2}$
25) $r$
p

26) Write an expression for the following: the product of Travis' height and 6 $\qquad$
27) Write an expression for the following: 3 times the quantity eight plus $x$ $\qquad$
28) Write an expression for the following: How many yards are in $f$ feet? $\qquad$
29) Write an expression for the following phrase: the sum of $b$ and 3 , divided by two.
30) Write an expression for the following phrase: 20 less $n$. $\qquad$
31) Write an expression for the following: How many months are in $y$ years? $\qquad$ Simplify.
32) $8 g+60 g$
33) $4(n+9)$
34) $-6(p-2)$
35) $x-8+4 x-7$
36) $5+6 y-5 y-2$
37) $6(-x-2)$
38) $(-4-c) 5$
39) $-4(6 c-8)+2 c$
40) $-3+7(x-2)$

Identify the classification(s) for the following numbers by circling the classification(s) for each.

| 41) | $\frac{3}{8}$ | Whole \# | Integer | Rational \# | Irrational \# | Real |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 42) | $0 . \overline{2}$ | Whole \# | Integer | Rational \# | Irrational \# | Real |
| 43) | -150 | Whole \# | Integer | Rational \# | Irrational \# | Real |
| 44) | $\sqrt{20}$ | Whole \# | Integer | Rational \# | Irrational \# | Real |
| 45) | -0.5 | Whole \# | Integer | Rational \# | Irrational \# | Real |
| 46) | 0 | Whole \# | Integer | Rational \# | Irrational \# | Real |

Write the fraction equivalent to each of the following decimal numbers.
47) $-0 . \overline{1}=$ $\qquad$
48) $8 . \overline{62}=$ $\qquad$
49) $0 . \overline{245}=$ $\qquad$

## Multiple Choice: Circle the letter beside the correct answer.

50) Which set below shows the integers in order from least to greatest?
A. $\{-2,-3,2,3\}$
B. $\{2,3,-3,-2\}$
C. $\{-3,-2,2,3\}$
D. $\{3,2,-2,-3\}$
51) A hot air balloon is flying at 212 feet above the ground. It goes down 72 feet, then goes up 37 feet.

Which expression represents the height of the hot air balloon after these changes?
A. $212+72+37$
B. $212+(-72)+37$
C. $212-(-72)+37$
D. $212+72+(-37)$
52) The square root of 51 is between which two whole numbers?
A. 4 and 5
B. 5 and 6
C. 6 and 7
D. 7 and 8
53) Naomi picked $y$ flowers and will put an equal number of flowers in $n$ vases. Which expression represents the number of flowers Naomi will put in each vase?
A. $\frac{n}{y}$
B. $n-y$
C. $\frac{y}{n}$
D. $y-n$
54) Which expression has a value of -3 ?
A. $-7-(4)$
B. $-4-(-7)$
C. $-7-(-4)$
D. -4-(7)
55) Which point is located closest to $-\frac{7}{10}$ on the number line below?

A. $w$
B. $X$
C. $Y$
D. $Z$
56) Which number line below shows the set of numbers graphed correctly?

$$
\left\{3.5,-\frac{7}{2}, \frac{1}{2},-2,-1 \frac{1}{2}\right\}
$$

A.

B.

C.

D.

57) On a winter Monday in Prescott, the temperature at 8 a.m. was $-8^{\circ} \mathrm{F}$. At 1 p.m. it was $27^{\circ} \mathrm{F}$. By how many degrees did the temperature change from morning to afternoon?
A. $-35^{\circ}$
B. $-19^{\circ}$
C. $19^{\circ}$
D. $35^{\circ}$
58) Which expression below has been simplified using the correct procedure?
A. $2+4(x+2)$
B. $2+5(x-7)$
$2+4 x+8$
$7(x-7)$
$4 x+10$
$7 x-49$
C. $\begin{array}{r}4-7(x+5) \\ 4-7 x+5 \\ -7 x+9\end{array}$
D. $\begin{array}{r}7-3(x-5) \\ 7-3 x-15 \\ -3 x-8\end{array}$
59) Which is an irrational number?
A. $\sqrt{5}$
B. $\sqrt{9}$
C. -1
D. $-\frac{2}{3}$

## Review 2 Simplifying Expressions

Objective: I can write and simplify numerical and variable expressions.

Simplify.

1) $|-8|=$ $\qquad$ 2) $|21|=$ $\qquad$
2) $|0|=$ $\qquad$

Choose the correct symbol to make a true sentence ( $>,<$, or $=$ ).
4) 7 $\qquad$ -133
5) -88 $-2$
6) $|-8|$ $\qquad$ 8
7) Order the set $\{8,-26,2,-10,-25,55,10\}$ from least to greatest.
$\square$
 ,
 ,
 ,
 ,
 \}
8) Graph the following numbers on a number line: $3,-4,-1,2$

Simplify. Don't make careless errors.
9) $8+(-10)$
10) $-4+(-7)$
12) $10-(-2)$
13) $-1-2$
15) $10+6(-2)$
16) $(20+-20)(-3)$
11) $\frac{-30}{-6}$
14) $-8^{*}-6$
17) $-6+(-8)-1$
18) 14-4-5
19) $-6-2(-3-5)$
20) $-27 \div 9 * 3$

Evaluate if $m=-4, n=3, p=-1, r=5$
21) $3 m$
22) $n-p$
23) $-m+2 p r$
24) $3 r^{2}$
25) ${ }_{-}^{r}$
p

26) Write an expression for the following: the difference between Flor's money and 10 $\qquad$
27) Write an expression for the following: 8 times the quantity eight minus $h$ $\qquad$
28) Write an expression for the following: How many inches are in feet? $\qquad$
29) Write an expression for the following phrase: the sum of $b$ and 3, divided by two.
30) Write an expression for the following phrase: 20 less $n$. $\qquad$
31) Write an expression for the following: How many quarters are in dollars? $\qquad$

Simplify.
32) $5 f+70 f$
33) $8(n+5)$
34) $-6(3 p+4)$
35) $6 x-4+x-3$
36) $10+5 y-5 y-7$
37) $-4(-x-10)$
38) $(-3-p) 9$
39) $6(8 v-5)+2 v$
40) $-7+5(x-2)$

Identify the classification(s) for the following numbers by circling the classification(s) for each.

| 41) | $-\frac{3}{8}$ | Whole \# | Integer | Rational \# | Irrational \# | Real |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 42) | $8 . \overline{2}$ | Whole \# | Integer | Rational \# | Irrational \# | Real |
| 43) | $\sqrt[3]{27}$ | Whole \# | Integer | Rational \# | Irrational \# | Real |
| 44) | $\sqrt{10}$ | Whole \# | Integer | Rational \# | Irrational \# | Real |
| 45) | 10.5 | Whole \# | Integer | Rational \# | Irrational \# | Real |
| 46) | -50 | Whole \# | Integer | Rational \# | Irrational \# | Real |

Write the fraction equivalent to each of the following decimal numbers.
47) $-0 . \overline{8}=$ $\qquad$
48) $0 . \overline{24}=$ $\qquad$
49) $7 . \overline{541}=$ $\qquad$

## Multiple Choice: Circle the letter beside the correct answer.

50) Simplify: $\frac{\left|3^{2}-6^{2}\right|}{-3}$
A. 15
B. 9
C. -9
D. -15
51) When $x=2$ and $y=3$, which expression has the smallest value?
A. $(x-y)$
B. $x \cdot y$
C. $x+y$
D. $x \div y$
52) The quotient of two negative integers is always:
A. zero
B. one
C. negative
D. positive
53) Which of the following best represents the location of point $A$ on the number line shown below?

A. $-2 \frac{3}{4}$
B. $-2 \frac{1}{4}$
C. $-1 \frac{1}{2}$
D. $-1 \frac{1}{4}$
54) Which expression shows 3 less than 20?
A. $20+3$
B. 20-3
C. $20 \times 3$
D. $20 \div 3$
55) Which of the following is equivalent to the expression below?

$$
17(83-16)
$$

A. $17(83)-16$
B. $(17-16)(83)$
C. $17(83)-17(16)$
D. $(17-83)(17-16)$
56) Look at the number line.

57) What point shows the location of -6 on the number line?
A. Point $P$
B. Point $Q$
C. Point $R$
D. Point $S$
58) Which expression represents the product of $n$ and 25?
A. $25 n$
B. $25-n$
C. $25+n$
D. $25 \div n$
59) If $x=4$ and $y=-1$, what is the value of the expression below?

$$
\sqrt{2 x-8 y}
$$

A. 0
B. $\sqrt{5}$
C. $\sqrt{14}$
D. 4
60) What is the value of the expression below?

$$
\sqrt{36}+13 \times 2
$$

A. 32
B. 38
C. 62
D. 98
61) A group of hikers climbed from Salt Flats (elevation -55 feet) to Talon Bluff (elevation 620 feet). What is the difference in elevation between Talon Bluff and Salt Flats?
A. 565 feet
B. 575 feet
C. 665 feet
D. 675 feet
62) Which of the following is not an irrational number?
A. $\pi$
B. $\sqrt{3}$
C. $\sqrt{8}$
D. $2 \sqrt{4}$

