Volume of Cylinders Explained

The process for understanding and calculating the volume of cylinders is identical to that of prisms, even though cylinders are curved.

$$
\mathrm{V}=\mathrm{Bh}
$$

Here is a general cylinder.
The base is a \qquad

Let's start with a specific cylinder with radius 3 units and height 4 units

We will fill the bottom of the cylinder with unit cubes. This means the bottom of the prism will act as our surface and will be covered with as many unit cubes as possible without stacking them on top of each other yet.

This is what it would look like.

Specific Cylinder

The diagram above is strange looking because we are trying to stack cubes within a curved space. Some cubes have to be shaved so as to allow them to fit inside. Also, the cubes do not yet represent the total volume. It only represents a partial shaved so as to allow them to fit inside. Also, the cubes do not yet represent the total volume. It
volume, but we need to count these cubes to arrive at the total volume.

To count these full and partial cubes, we need to use the formula for the area of a circle.

The radius of the circle base (bottom) is 3 units and the

formula for the area of a circle is $A=\pi r^{2}$. So the number of cubes is approximately $(3.14)(3)^{2}=(3.14)(9)$, which to the nearest tenth, is equal to 28.3 units 2.

If we imagine the cylinder like a building, we could stack cubes on top of each other until the cylinder is completely filled. It would be filled so that all the cubes are touching each other such that no space existed between cubes.

It would look like this.

To count all the cubes above, we will use the consistency of the solid to our advantage.
We already know that there are 28.3 cubes on the bottom level and all levels contain the exact same number of cubes.
Therefore, we need only take the bottom total of 28.3 and multiply it by 4
because there are four levels to the cylinder.
$\left(28.3 \mathrm{u}^{3}\right)(4)=113.2$ total cubic units in our original cylinder.
" B" h
To understand the units of our answer, we could think in terms of algebra and exponents. We know that
$(x)^{2}$ times x is $x^{2} \cdot x^{1}$ which equals x^{3}, similarly, (units $)^{2}$, times units ${ }^{2}=$ units ${ }^{3}$ for the same reason.
So if we had to find the volume of our original sylinder, all we ne needed to do was multiply π times (3 units) ${ }^{2}$ (4 units)

Unit 9 Geometry | Volume of Cylinders
NOTES " B " - area of the base face ooodcircle?
To find the volume of a cylinder, you will need to recall how to calculate the area of a circle!
Find the area of each circle. Use the formula $A=\pi r^{2}$. Write your answers in terms of π.
1)
2) Diameter $=6 \mathrm{ft}$
3) Circumference $=10 \pi \mathrm{u}$

$$
D=10
$$

 $r=5$

$$
\begin{gathered}
A=\pi(5)^{2} \\
25 \pi u^{2} \\
B=25 \pi
\end{gathered}
$$

Use your answers to questions $1-3$ to calculate the volume of the cylinders below. Write your answers in terms of π and then round to the nearest tenth. $\quad \sqrt{=B h}$
4) Radius $=4 \mathrm{~cm} \quad V=B W$ 5) Diameter $=6 \mathrm{ft}$
6) Circumference $=10 \pi u$

The FORMULA for the volume of a cylinder is: $V=\left(\pi r^{2} h . \quad V=(B) h\right.$
Where " r " is the \qquad of the circular face at the base of the cylinder, and " h " is the \qquad height of the cylinder.

To find the volume of the cylinder to the right, substitute the measurements into the formula above.

Notice that in this figure, the diameter is given, and we need the radius. $r=4 \mathrm{~cm}$
Diameter $=$ \qquad radius, so $r=$ \qquad
Height of the cylinder $=$ \qquad q
Formula: $\quad V=\pi r^{2} h$

$$
\begin{aligned}
& V=\pi(4)^{2}(9)=\pi(16)(9) \\
& V=144 \pi \mathrm{~cm}^{3} \quad 144 \pi \\
& V \approx 452.4 \mathrm{~cm}^{3}
\end{aligned}
$$

Assignment (More Notes/ Guided Practice?)
Find the volume of the cylinders below. Be sure to include cubic measurements in your answers and leave your answers in terms of π and then round to the nearest tenth.

Use the FORMULA: $\quad V_{\text {cylinder }}=\pi r^{2} h$.
$r=1.5 \quad h=5$
1)

5 cm

3)

4)

$V=\pi(1.5)^{2}(8)$

$$
V=\pi(7)^{2}(25)
$$

$\pi(2.25)(8)$ $\pi(49)(25)$
$V=18 \pi \mathrm{in}^{3}$ $V=1225 \pi \mathrm{~cm}^{3}$
$V=20 \pi \mathrm{in}^{3}$
$V \approx 56 . \sin ^{3}$ $V \approx 3848.5 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& V=\pi(6)^{2}(12) \\
& V(36)(12) \\
& V=432 \pi \mathrm{~mm}^{3} \\
& V x 1357.2 \mathrm{~mm}^{3}
\end{aligned}
$$

9) Circumference $=5 \pi \mathrm{ft} \quad D=5$
$h=14$

$$
\pi(2.5)^{2}(14)
$$

$\pi(6.25)(14)$
$V=87.5 \pi \mathrm{ft}^{3}$
$V \approx 274.9 \mathrm{ft}^{3}$

Notes - VOLUME OF 3-D FIGURES - Right Prisms and Cylinders; finding any dimension
To find the volume of a right prism or cylinder, multiply the
Base Area by the height.

BASIC VOLUME FORMULA FOR ANY RIGHT PRISM:

The Volume formula for a CYIINDER is:

Given the volume of a shape, we can solve for a missing dimension such as the height or radius. It should come as no surprise that to isolate the variable in the equation, we will use inverse operations.

Example 1

Solving for the Height

Let's start with a cylinder with a volume of approximately $314 \mathrm{in}^{3}$ and a radius of 5 in. Since we know the formula for the volume of the cylinder, we can plug in and work backwards.

Volume ≈ 314 in 3

Example 2
Answer: Height $=4$ in
Given the Area of the Base, find the Height
Given the figure. find the height if the area of the base is $100 \mathrm{~m}^{2}$ and the volume is $1200 \mathrm{~m}^{3}$

Identify the base by name:

Show work

$V=1200$

