~~Unit 9, Page 2~~

Rectangular Prisms

Measurement of volume is expressed in cubic units such as $i^{3}, f t^{3}, m^{3}, \mathrm{~cm}^{3}$, or units ${ }^{3}$. The volume of a solid is the number of cubic units that can be contained in the solid.

First, let's look at a rectangular solid.

Example 1:
How many cubic units will it take to fill up the figure below?

(

Name the 3 dimensions of any rectangular prism!
\qquad width : height To calculate volume, you simply multiply the \&

\qquad times the \qquad
Volume of a Rectangular Solid $=$ (length) * (width) * (height)

For the rectangular solid above,
$1=6 \mathrm{w}=3$, and $\mathrm{h}=4$, so

$$
V=(6 u)(3 u)(4 u)
$$

$$
\mathrm{V}=72 \text { units }^{3}
$$

To find the volume of any right prim, calculate the area of the BASE and multiply by the height.
$V=B h$, where B is the area of the base.) Capital $B \cdot \cdot$
Examples

Identify the base by name: Rectangle... $A=l \omega$
Calculate the area of the base:
Show work

$$
\sum>
$$

$$
\begin{aligned}
& B=l \omega \\
& B=(4)(12) \\
& B=48 \mathrm{~m}^{2} \\
& V=B h \\
& =(48)(10) \\
& V=480 \mathrm{~m}^{3}
\end{aligned}
$$

2. Identify the polyhedron by name:

- angular Prism

$$
\text { - Ircingular Prism } \quad r=480 \mathrm{~m}^{2}
$$

Identify the base by name:

$$
\begin{aligned}
& \text { Triangle... } A=\frac{b h}{2} \\
& B=b h
\end{aligned}
$$

Calculate the area of the base:
Show work

Calculate the volume:

$$
\begin{aligned}
& B=\frac{6 h}{} \\
& B=\frac{1020)}{20} \\
& B=\frac{102}{2}=50 \mathrm{~mm}^{2} \\
& V=B h \\
& V=(50)(13) \\
& V=650 \mathrm{~mm}^{3}
\end{aligned}
$$

3. Identify the polyhedron by name: Trapezoidal Prism

Identify the base by name: Trapezoid... $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$ Calculate the area of the base: Show work
 Calculate the volume: $\left.\begin{array}{l}b_{1}=5 \\ b_{2}=9 \\ h=4\end{array}\right\} \begin{aligned} & \text { Trapezoid } \\ & \text { measures }\end{aligned}$

$$
\begin{aligned}
& B=\frac{1}{2}\left(b_{1}+b_{2}\right) h \\
& B=\frac{1}{2}(5+9)(4) \\
& B=\frac{1}{2}\left(\frac{1}{4}\right)(4) \\
& B=28 \mathrm{~cm}^{2} \\
& V=B h \\
& V=(28)(6) \\
& V=168 \mathrm{~cm}^{3}
\end{aligned}
$$

