~~Unit 9, Page 16~~

Volume of Spheres
Definition
Sphere - the set of all points in space that are the same distances from a center point.

Part A)
For Examples 1 and 2, find the volume of each sphere.
Use 3.14 for π

Example 1:

$\begin{aligned} & \text { In terms of } \pi \\ & \text { Volume }=\end{aligned} \quad 1774 . \overline{6} \pi \mathrm{~m}^{3}$

$$
1774 . \overline{6}(3.14)
$$

Find the volume to the nearest tenth.

$$
\text { Volume } \approx 5572.5 \mathrm{~m}^{3}
$$

Example 2: (Hint: What's the radius?)

$$
\begin{aligned}
& \text { In terms of } \pi \\
& \text { Volume }=
\end{aligned} \frac{3658 . \overline{6} \pi m^{3}}{3658 . \overline{6}(3.14)}
$$

Find the volume to the nearest tenth.

$$
\text { Volume } \approx 11,488 \cdot 2 \mathrm{~m}^{3}
$$

Part B) HEMISPHERES
Definition
/HEMISPHERE - a circular cross section that separates a sphere into two congruent halves.

$$
\frac{1}{2} \cdot \frac{4 \pi r^{3}}{3} \quad \frac{24 \pi r^{3}}{63}
$$

FORMULA $V=\frac{1}{2}\left(\frac{4 \pi r^{3}}{3}\right)$

$$
\frac{2 \pi r^{3}}{3}
$$

Example 1:
Find the volume of the hemisphere with a diameter of 15 km .Round to the nearest tenth.

$$
\begin{aligned}
& V=\frac{2 \pi r^{3}}{3}=\frac{2 \pi(7.5)^{3}}{3} \\
& r=7.5
\end{aligned}
$$

Example 2:

$$
\frac{\frac{2 \pi(421.875)}{13}}{2 \pi(140.625)} \begin{aligned}
& 281.25(3.14) \\
& 281.25 \pi
\end{aligned}
$$

The inside of a cereal bowl is in the shape of a hemisphere. Find the maximum amount of milk that can fit in the bowl Round to the nearest hundredini.

$$
V=\frac{2 \pi r^{3}}{3}=\frac{2 \pi(4)^{3}}{3}=\frac{2 \pi(64)}{3}=\frac{128 \pi}{3}
$$ $r=4 i$

$$
42 . \overline{6} \pi
$$

$$
42.6(3.14)
$$

$$
133.97 \mathrm{in}^{3}
$$

Example 1:
The volume of a golf ball is about $13.2 \pi \mathrm{~cm}^{3}$ What is the radius f the golf ball to the nearest tenth?

$$
\left.\Rightarrow \quad \frac{1}{3\left(\frac{4 \pi r^{3}}{31}\right.}=13.2 \pi\right) 3
$$

$$
\begin{aligned}
& \frac{4 \pi r^{3}}{4 \frac{39.6 \pi}{4}} \\
& \sqrt[3]{\frac{r^{3}}{r}}=\frac{\sqrt[3]{9.9}}{r} \approx 2.1 \mathrm{~cm}
\end{aligned}
$$

Example?
the volume of a baseball is about 13.39 cubic inches. What is the diameter of the baseball to the nearest tenth?

$$
3\left(\frac{4 \pi r^{3}}{3}=13.39\right) 3
$$

$4(3.14) r^{3}=40.17$
$\frac{12456 r^{3}}{12.52}=\frac{40.17}{12.56}$
$\sqrt[3]{r^{3}}=\sqrt[{-\sqrt{3.2}}]{ } \quad r \approx 1.5$

$$
4 \pi r^{3}=40.17
$$

