UNIT 6: IRRATTUONAL MATTI

~~ Unit 6, Page 14 ~
Write each number in the correct location on the Venn Diagram of the real number system. Each number should be written only once.

Put a check mark for each set that the number is a part of:

Approximating Square Roots
(Ex) Find the square root of 95 to the nearest tenth.

81
these perfect squares are
(19) 100
oo distance betwer. the two spores perfect 5 jor

(syce $9 \quad \sqrt{100}$

$$
\begin{aligned}
& \begin{aligned}
& \approx \frac{14}{20} \\
\approx & 7 \text { reduce. }
\end{aligned} \\
& \approx \frac{7}{10} \int_{5}^{2} \text { fraction } \\
& .7^{2} \text { decomel }
\end{aligned}
$$

$$
\sqrt{95} \approx 9.7 \quad \text { Answer }
$$

Estimations of Irrational Numbers

- opes:

For the following assignment, do NOT use a calculator.
Example: Approximate $\sqrt{60}$
What two consecutive perfect squares is 60 in between? 49 and 64
The $\sqrt{49}=7$ and $\sqrt{64}=8$. So the $\sqrt{60}$ is between 7 and $8,{ }^{3}$

$\sqrt{49} \sqrt{50} \sqrt{51} \sqrt{52} \sqrt{53} \sqrt{54} \sqrt{55} \sqrt{56} \sqrt{57} \sqrt{58} \sqrt{59} \sqrt{60} \sqrt{61} \sqrt{62} \sqrt{63} \sqrt{64}$
Since 60 is closer to $64, \sqrt{60}$ will be closer to the 8 . You might estimate 7.7 or 7.8 . (If you use a calculator, you will find that' $\sqrt{60} \approx 7.74597$) That is a pretty close estimation.

$$
\begin{aligned}
& \text { you will find that } \sqrt{60 \approx 7.74597 \text {) That is a pretty close estimation. }} \begin{array}{l}
\sqrt{49}<\sqrt{60}<\sqrt{64}
\end{array}
\end{aligned}
$$

7 $<\sqrt{60}<$ \qquad so I approximate \qquad ≈ 7.7 Approximate the following to the nearest tenth:
1)
 $\frac{\sqrt{36}}{6}<\sqrt{45}<\sqrt{49}$ $6<\sqrt{45}<7$ sol approximate: \qquad
2)
 sol
 $4<\sqrt{24}<5$ sol approxim $\frac{\approx 4,9}{2,5)} \leqslant 4 \frac{8}{9}$
3)
\qquad $<\sqrt{6}<$ \qquad sol approximate:
 sol approximate:
4)
 $\frac{3}{\sqrt{9}} 1$

