~~ Unit 6, Page 37 ~~

Objectives: I can apply the Pythagorean Theorem to find the distance between two

Finding the Distance between Two Points

Graph the points. Draw a right triangle, Use the Pythagorean Theorem to find the distance between the points. Round answers to the nearest whole number as necessary.

Practice #3) (-4, -3) and (1, -6)

C= 9+16

JC2= 25

0 = 5

Distance between the two points is 5u

C2 = 34

Distance between the two points is #6

Find the difference in your x values. $\frac{4-1=3}{x_2-x_1}$

Find the difference in your y values $\frac{(y-2)^2}{y_2-y_1}$ This is also called: Δy or $\frac{(y-2)^2}{y_2-y_1}$

Find the difference in your x values. This is also called:

> Find the difference in your y values.

Practice #4) (-3,7) and (2,3)

Example #2) (-4,5) and (0,3)

0+4 Find the difference in your x values 0-(-4)=4 Δx or $x_2 - x_1$ This is also called:

Find the difference in your y values. 5-3=2This is also called: Δy or $y_2 - y_1$

Find the area of the triangle in #2. 42

(Show work.) A= bh = (4)(2) = 8 = 4u2

Find the perimeter of the triangle in #2. 10 u (Show work) P= a+b+c & 2+4+4

C= (Distance between the two points is 264 Find the difference in your x values. $(2+(+3) \div 5)$

This is also called: Δx or

Find the difference in your y values. 7 - 3 = 4This is also called: Δy or

Find the area of the triangle in #4. 10 u

(Show work.) $A = \frac{bh}{2} = \frac{(5)(4)}{2} = \frac{20}{2} = 10$

Find the perimeter of the triangle in #4. 15 u

(Show work) P= G+b+C= 4+5+6=154