UNIT 5: NON-LINEAR FUNCTIONS

4. Complete the $2^{\text {nd }}$ column in the table to show the number of ballots after each of the cuts.

Number of Cuts (n)	Number of Ballots (b)	Calculations for Number of Ballots (b)	Shortcut Form for Number of Ballots using Exponents (b)
0	1	1	$2^{0}=1$
1	2	$[1] \cdot 2$	$2^{1}=2$
2	4	$[1 \cdot 2] \cdot 2$	$2^{2}=4$
3	8	$[1 \cdot 2 \cdot 2] \cdot 2$	$2^{3}=8$
4	16	$[1 \cdot 2 \cdot 2 \cdot 2] \cdot 2$	$2^{4}=16$
5	32	$[1 \cdot 2 \cdot 2 \cdot 2 \cdot 2] \cdot 2$	$2^{5}=32$
6	64	$[1 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2] \cdot 2$	$2^{6}=64$
7	138	$[1 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2] \cdot 2$	$2^{7}=128$
8	256	$[1 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2] \cdot 2$	$2^{8}=256$
9	512	$[1 \cdot 2 \cdot 2] \cdot 2$	$2^{9}=512$
10	1024	$[1 \cdot 2 \cdot 2] \cdot 2$	$2^{10}=1024$

5. How did you find your entries in the table? each additional cat meant another factor of 2 , which doubled the previous amount
6. Fully complete the table above.
7. Fully complete the table above.

What is the relationship between the number of ballots and the previous number of ballots?
\qquad
7. What is the relationship between the number of cuts and the number of ballots? (In other words, how can you use the number of cuts to figure out the number of ballots?)
The number of cuts, n_{1} is the exponent on a base of 2 , so the equation: $b=2^{n}$ models the situation.
8. A rule (equation) to explain the relationship between of the number of cuts (n) and the number of ballots (b) is $=$ $1 * 2^{n}$. Use this rule (equation) to determine how many ballots Chen would have if he made 20 cuts? Show your work.

$$
b=1 * 2^{n}=1 * 2^{20}=1 * 1,048,576=1,048,576
$$

9. Use the rule (equation) to determine how many ballots Chen would have if he made 30 cuts? $n=30$ Show your work.

$$
b=1 * 2^{n}=1 * 2^{30}=1 * 1,073,74,824=1,073,741,824
$$

$$
b=500
$$

10. How many cuts would it take to make enough ballots for all 500 students in Chen's school? ?

Explain how you determined this answer. Substitute 500 for b, then guess \& Substitute 500 for b, then guess
(He exponat)... or use the table above.

$$
2^{n}=500,2^{4}=512 \text {, so } \quad n=9
$$

~~ Unit 5, Page 6 ~

12. Graph the relationship.

Use an interval of 1 on the x-axis d 50 on the y-axis.

\# of cuts	\#of ballots				
n	0	$	$	0	1
:---:	:---:				
1	2				
2	4				
3	8				
4	16				
5	32				
6	64				
7	128				
8	256				
9	512				
10	1024				

When you found the number of ballots after 10,20 and 30 cuts, you may have multiplied a long string of 2 s . Instead of writing long product strings of the same factor, you can use the exponential form. For example you can write $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ as 2^{5}, which is read as " 2 to the fifth power."

In the expression 2^{5}, you get $2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$. We say that 32 is the standard form for 2^{5}.
13. Write each expression in exponential form.
a) $2 \cdot 2 \cdot 2$ \square
b) $5 \cdot 5 \cdot 5 \cdot 5 \quad 5^{4}$
c) $1.5 \cdot 1.5 \cdot 1.5 \cdot 1.5 \cdot 1.5 \cdot 1.5 \cdot 1.5$

14. Write each expression in standard form.
a) 2^{7}
$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=128$
b) 3^{3}
$3 \cdot 3 \cdot 3=27$
c) 4.2^{3}
$(4.2)(4.2)(4.2)=$ 74.088
15. Most calculators have a or \boldsymbol{y}^{x} key for evaluating exponents. Use your calculator to find the standard form for each expression.
a) 2^{15}
32,768
b) $3^{10} \quad 59,049$
c) 1.5^{20}
3325.25673

