\int N1~ Modeling Real-World Situations with a SYSTEM of Equations in $[A x+B y=C]$ form.

In other words, if you substitute the x and y coordinates of the solution where $\mathrm{x}=\mathbf{3 0}$ and $\mathrm{y}=\mathbf{2 0}$ both equations are TRUE!

Equation 1: $x+y=50$
$(30)+(20)=50$ memberships and

Equation 2: $10 x+5 y=400$
$\$ 10(30)+\$ 5(20)=\$ 300+\$ 100=\$ 400$

~ Unit 4, Page 24 ~
4. Student's in Eric's gym class must cover a distance of 1,600 meters by running or walking. Most students run part of the way and walk part of the way. Eric can run at an average speed o 200 meters. per minute and walk an average of 80 meters per minute. He will spend a total of 14 minutes) exercising. (time spent running $=x$, time spent walking $=y 2$
a. Write an equation that relates the time Eric spends running and walking to his goal of covering 1,600 meters

$$
200 x+80 y=1600
$$

b. Write an equation that relates x and y to Eric's total time.
c. Graph both equations on the same grid.

Use an interval of 2 on the x-axis and 2 on the y axis.
These charts will help you find the x and y intercepts.

d. State the coordinates of intersection. Explain what these coordinates tell you about the situation. (Include both values and what it means to both conditions.)
$(4,10) 4$ minutes running at $200 \mathrm{~m} / \mathrm{min}$ plus 10 minutes
wally at $80 \mathrm{~m} / \mathrm{min}$ results in 14 minutes and
a distance of 1600 meters.

