Unit 3 Notes. "Comparing Rates in Equations, Tables, and Graphs"

Comparing Rates in Tables, Graphs, and Equations
Walking to the Yogurt Shop
Ms. Porter's gym class does an experiment to determine their walking rates. Here are the results for three students.

NAME	WALKING RATE
Terry	1 meter per second
Jade	2 meters per second
Jerome	2.5 meters per second

Jerome wonders how a person's walking rate would affect the amount of time it takes him or her to walk from school to the frozen yogurt shop.

1) If Terry, Jade, and Jeromeleave school together and walk toward the frozen yogurt shop at the rates given in the table, how far will each have travelled after 1 minute. $1 \mathrm{~min}=60 \mathrm{sec}$.
\qquad Jade: \qquad $2(60) d=120 \mathrm{~m}$ Jerome \qquad $2.5(60)$ $d=150 \mathrm{~m}$
2) If the yogurt shop is 750 meters from school, how long will it take each student to walk there?

$$
\text { Terry: } \frac{750}{6}=\frac{60}{60} t=\frac{12.5}{\mathrm{~min}}-\frac{750}{120}=\frac{120}{120} t=\frac{6.25}{150} \text { Jun } \frac{150 t}{150}=\frac{5}{\mathrm{~mm}}
$$

You have seen that a person's walking rate determines the time it takes him or her to walk a given distance. Now, let's more closely examine the effect that the walking rate has on the relationship between time and distance walked. Your findings will give you some important clues about how to identify linear relationships from tables, graphs, and equations.
3) Use the walking rates to complete the table showing the distance walked by each student after different numbers of seconds.

4) How does the walking rate affect the patterns in the tables? The walking rate is the a mount added to distance for each additions second
~ Unit 3 - page 11 ~
5) Graph the time and distance data for the three students o the same coordinate axes. Make a key to distinguish each udent's data. Use an interval of 1 on the x-axis and 2 on the y-axis. Your graph should include a title and a label for each axis.

Hat! For Jove just graph the "nice "points

then comet with a live. Thin plot the - between" pails!
6) How do the walking rates affect the graphs? Jerome has the fastest rate, so his line is steepest! Terry's lime is less steep than the others because his rate is the least.
7) For each student, write an equation that gives the relationship between the time and the distance walked. Let d represent the distance in meters and t represent the time in seconds.

Terry: \qquad $d=1 t$ Jade: \qquad $d=2 t$ Jerome: $d=2.5 t$
8) How does the walking rate affect the equations? The walking rate is the number that is The walking r.
in seconds). multiplied by the time (in seconds).

