Unit 3 Notes: "Finding Slope Given Two Points"
~~ Unit 3, Page $37 \sim \sim$
Finding Slope Given Two Points
What is the slope of this line?

We can find the slope of a line through two points without graphing them, using a formula.

Examples: 1) Find the slope of the line that contains the points $(-5,2)$ and $(7,4)$.

$$
\begin{aligned}
\frac{\text { change in } y}{\text { change in } x} & =\frac{2 n d y \text {-coordinate }-1 \text { st } y \text {-coordinate }}{2 n d x \text {-coordinate }-1 \text { st } x \text {-coordinate }} \quad \text { Note that order is important. } \\
& =\frac{4-2}{7-(-5)} \quad M=\frac{\Delta y}{\Delta x} \quad \frac{2-5}{1-(-2)}=\frac{2+(-5)}{1+2}=\frac{-3}{3}=-1 \\
& =\frac{2}{12} \text { or } \frac{1}{6} \quad M=-
\end{aligned}
$$

2) Find the slope of the line that passes through $(3,5)$ and $(-1,4)$.

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
x_{1} y_{1} \quad x_{2} y_{2}
$$

$$
\frac{4-5}{-1-3}=\frac{4+(-5)}{-1+(-3)}=\frac{-1}{-4} \frac{1}{4}
$$

nd the slope of the line that contains each pair of points. Show all work using the slope formula.

1) $\mathrm{K}(3,9), \mathrm{L}(2,4)$
2) $A(1,0), B(-3,1)$
3) $M(8,-6), N(8,4)$ undefined All!.

$$
\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{9-4}{3-2}=\frac{5}{1}=5
$$

$$
\frac{y-y}{x-x}=\frac{4-(-6)}{8-8}=\frac{4+6}{0}=\frac{10 \text { rise }}{0} \mathrm{~mm}
$$

4) $S(1,-5), T(-3,-4)$
5) $W(1,6), Z(2,6)$
6) $P(-4,-5), Q(-3,7)$
