13-3 Enrichment

To find the length of diagonals in cubes and rectangular solids, a formula can be applied. In the example below, the length of diagonal $\overline{A G}$ or d can be found using thelformula

$$
\left\{d^{2}=a^{2}+b^{2}+c^{2} \text { or } d=\sqrt{a^{2}+b^{2}+c^{2}} \text {. or } d=\sqrt{l^{2}+\omega^{2}+h^{2}}\right.
$$

Example:

The diagonal, d, is equal to the square root of the sum of the squares of the length, a, the width, b, and the height, c.

Example: Find the length of the diagonal of a rectangular prism with length of 8 meters, width of 6 meters, and height of 10 meters.

$$
\begin{aligned}
d & =\sqrt{8^{2}+6^{2}+10^{2}} \\
& =\sqrt{64+36+100} \\
& =\sqrt{200}=100 \\
& =14.1 \mathrm{ml} \\
& =10 \sqrt{2} \longleftarrow
\end{aligned}
$$

Substitute the dimensions into the equation.

Square each value. Add.

Find the square root of the sum. Write in simplest radical form!

Solve. Use $d=\sqrt{a^{2}+b^{2}+c^{2}}$. Round answers to the nearest tenth.

1. Find the diagonal of a cube with sides of 6 inches.

$$
d=\sqrt{6^{2}+6^{2}+6^{2}}=\sqrt{3 \cdot 36}=6 \sqrt{3} \mathrm{in}
$$

2. Find the diagonal of a cube with sides of 2.4 meters.

$$
d=\sqrt{(2.4)^{2}+(2.4)^{2}+(2.4)^{2}}=\sqrt{3 \cdot(2.4)^{2}}=2.4 \sqrt{3109}
$$

3. Find the diagonal of a rectangular solid with length of 18 meters, width of 16 meters, and height of 24 meters. $d=\sqrt{18^{2}+16^{2}+24^{2}}=\sqrt{324+256+576}=\sqrt{1156}=34 \mathrm{~m}$
4. Find the diagonal of a rectangular solid with length of
15.1 meters, width of 8.4 meters, and height of 6.3 meters. $d=\sqrt{(15.1)^{2}+(8.4)^{2}+(6.3)^{2}}=\sqrt{228.01+70.56+39.69}=\sqrt{338.26} \mathrm{~m} \quad \approx 18.4 \mathrm{~m}$
5. Find the diagonal of a cube with sides of 34 millimeters
$d=\sqrt{(34)^{2}+(34)^{2}+(34)^{2}}=\sqrt{3 \cdot(34)^{2}}=34 \sqrt{3} \mathrm{~mm}$
6. Find the diagonal of a rectangular solid with length of
8.9 millimeters, width of 6.7 millimeters, and height of

Skill B Using the formula for the length of a diagonal of a right rectangular prism
Recall A diagonal of a polyhedron is a segment that joins two points that are vertices of different faces of the polyhedron. The Pythagorean Theorem can be used to derive a formula for the length of a diagonal of a right rectangular prism:
If a right rectangular prism has length ℓ, width w, and height h, then the length, d, of a diagonal is given by $d=\sqrt{\ell^{2}+w^{2}+h^{2}}$.

- Example

Find the length of a diagonal of the right rectangular prism.

- Solution

$d=\sqrt{\ell^{2}+w^{2}+h^{2}}=\sqrt{5^{2}+2^{3}+3^{2}}=\sqrt{38}=6.16 \mathrm{~m}$

Find the length of a diagonal of a right rectangular prism with the given dimensions. Give your answer as a radical in simplest form and as decimal rounded to the nearest hundredth.
10. $\ell=9, w=4, h=5 \sqrt{122} \approx 11.05$
11. $\ell=2, w=2, h=4 \sqrt{24}=2 \sqrt{6} \approx 4.90$
12. $\ell=3, w=7, h=2 \sqrt{62} \approx 7.87$
13. $\ell=3, w=2, h=3 \sqrt{22} \approx 4.69$
14. $\ell=15, w=6, h=9 \sqrt{342}=3 \sqrt{38} \times 18.49$
15. $\ell=6, w=12, h=10 \sqrt{280}=2 \sqrt{70} \approx 16.73$
16. $\ell=8, w=10, h=8 \sqrt{228}=2 \sqrt{57} \times 15.10$
17. $i=10, w=8, h=4 \sqrt{180}=6 \sqrt{5} \approx \sqrt{3.42}$

Find the missing dimension' of the right rectangular prism. Give your answer as a radical in simplest form and as a decimal rounded to the nearest hundredth.
18. $d=17, w=9, \ell=12, h=8$
(10) $d=\sqrt{9^{2}+4^{2}+5^{2}}$
(11) $d=\sqrt{2^{2}+2^{2}+4^{2}}$
$=\sqrt{4+4+16}$
$=\sqrt{24=4}$
$=2 \sqrt{6} \approx 4.90$
19. $d=12, w=8, h=5, \ell=\sqrt{55} \approx 7.42$
$=\sqrt{81+16+25}$
$=\sqrt{122} \approx 11.05$
(15) $d=\sqrt{6^{2}+12^{2}+10^{2}}$
$=\sqrt{36+144+100}$
$=\sqrt{225+36+81}$
$=\sqrt{342}=\frac{98}{88}$
$=3 \sqrt{38} \approx 18.49$
$=\sqrt{280}<40$
$=2 \sqrt{70} \approx 16.73$
(16) $d=\sqrt{8^{2}+10^{2}+8^{2}}$
(17) $d=\sqrt{10^{2}+8^{2}+4^{2}}$
(14) $d=\sqrt{15^{2}+6^{2}+9^{2}}$
(18) $17^{2}=a^{2}+12^{2}+h^{2}$ $289=81+144+h^{2}$ $289=-225+h^{2}$
$-225=-225$ $\sqrt{64}=\sqrt{h^{2}}$
$8=h$
(19) $12=\sqrt{8^{2}+5^{2}+l^{2}}$
$12=\sqrt{64+25+l^{2}}$

11. One of the angles of a rhombus has a measure of 60 . If the perimeter of the rhombus is 40 , find the length of each diagonal.

$$
\begin{aligned}
& R O=2(5 \sqrt{3})=10 \sqrt{3 u} \\
& H M=2(5)=10 u
\end{aligned}
$$

12. Find the perimeter of the trapezoid below.

$$
\begin{aligned}
P & =12+20+2(4 \sqrt{2}) \\
& =(32+8 \sqrt{2}) 4
\end{aligned}
$$

IV Spacial Figures

$$
\begin{array}{ll}
6^{2}+8^{2}+h^{2}=26^{2} & \sqrt{h^{2}}=\sqrt{576} \\
36+64+h^{2}=676 & h=24 u
\end{array}
$$

13.

Find the height of the box whose base is 6 by 8 and whose diagonal is 26

$$
\text { Lateral edge }=26=A B
$$

Slant hoight: $=24$
Find altitude (height)

$$
\begin{array}{llll}
\frac{x}{2} & \frac{24}{2} & \frac{x}{2}=5 \\
5 & 12 & 13 & x=10
\end{array}
$$

15. Find the perimeter of the triangle. (hint: draw an altitude)

$$
\begin{aligned}
P & =10+5+5 \sqrt{2}+5 \sqrt{3} \\
& =(15+5 \sqrt{2}+5 \sqrt{3}) 4
\end{aligned}
$$

