

Geometry: 9.6 - Pythagorean Families \& The Reduced Triangle Principle
It's time for some quality Family Time! Get to know your families;
 BOND with them!

Pythagorean Families:

1. * $3-4-5$
2. 5 5-12-13 (or Pythagorean Triples)
3. $7-24-25$
4. \qquad
5. $* 9.40-41$
6. \qquad

Examples: Try to find x without using the Pythagorean Theorem!
1.

2.

3.

2. $\frac{x}{2}=5.2$
4.

5.
6.

3. $\frac{x}{3}=13 \cdot 3$
7.

9.

$$
\begin{aligned}
& \frac{15}{3} \frac{36}{3} \frac{x}{3} \\
& 5-12-13
\end{aligned}
$$

$$
\begin{aligned}
& \frac{70}{10} \frac{x}{10} \frac{250}{10} \quad \frac{x}{2 \sqrt{6}} \frac{30 \sqrt{6}}{2 \sqrt{6}} \frac{34 \sqrt{6}}{2 \sqrt{6}} \\
& 38-24-25 \\
& 28 \sqrt{2 \sqrt{6}}=8.2 \sqrt{6} \frac{x}{x}=15=17 \\
&
\end{aligned}
$$

- 0

$$
\begin{aligned}
& \frac{10}{2} \frac{y y}{2} \frac{26}{2} \\
& 5-12-13 \text { Finis } \\
& \frac{y}{2}=12 y=24
\end{aligned}
$$

10. Find x.
11. Find the altitude to the base of an isosceles triangle with (leg of 15 and perimeter of 48 .)

$$
p=48
$$

$$
\begin{aligned}
& 48-(2.15)=48-30=18 \\
& \left.\frac{9}{3} \frac{x}{3} \frac{15}{3} \quad \frac{\frac{x}{3}=4}{3-4-5} \begin{array}{|ccc|}
\hline x=12 \\
\text { ant }
\end{array}\right]
\end{aligned}
$$

12. The reduced triangle principle can be used on any right triangle - even non-families! It is occasionally useful for solving a triangle with "messy" sides. Examples: Find x .

$$
\begin{aligned}
& \frac{144}{144} \frac{x}{144} \frac{288}{144} \quad \frac{x}{144}=\sqrt{3} \\
& 1-2
\end{aligned}
$$

13. Quick - find x !

$$
\begin{array}{lll}
\frac{6}{2} & \frac{x}{2} & \frac{8}{2} \\
3 & \sqrt{7} & 4 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \sqrt{4^{2}-3^{2}} \\
& \sqrt{6-9}
\end{aligned}
$$

