The app uses a circle. The points that are the same distance from a given central location form a circle.
where the person with the app is standing

You would need to know the location of the person and the radius length of the search area.

Construct Arguments
Yes - if Damian and his friend use a search radius that is long enough, the app could find the same restaurant from each person's location.

HABITS OF MIND
Use Appropriate Tools

- the geometric figure would be a circle
- the proper tool to use is a compass.

1. What arno the radius and center of the circle with the equation

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \text { center: }(2,3)
$$

center: $(h, k)$ radius: $\sqrt{25}=5$
radius: $\sqrt{r^{2}}$

Try It! Write the Equation of a Circle


Center $(3,0)$
radius $=2 \sqrt{2}$

$$
\begin{aligned}
& (x-3)^{2}+(y-0)^{2}=(2 \sqrt{2})^{2} \\
& (x-3)^{2}+y^{2}=8
\end{aligned}
$$

$$
\begin{gathered}
)^{2} \quad \begin{array}{c}
\text { center }(-3,-1) \\
\text { radius }
\end{array}=\sqrt{1^{2}+3^{2}} \\
=\sqrt{1+9} \\
=\sqrt{10} \\
{[x-(-3)]^{2}+[y-(-1)]^{2}=(\sqrt{10})^{2}} \\
(x+3)^{2}+(y+1)^{2}=10
\end{gathered}
$$



220 TOPIC 9 Coordinate Geometry

1) Find the midpoint of the diameter

$$
\left(\frac{x_{2}+k_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)=\left(h_{1} k\right) \text { center of } \odot
$$

2) Use the distance formula to find the radius length between center and one end point.
3) 

$$
\begin{aligned}
& \text { center }=(h, k) \\
& \text { radius }=r \\
& \text { Write equation }
\end{aligned}
$$

EXAMPLE 3 (다) Try It ! Determine Whether a Point Lies on a Circle
3. Determine whether each point lies on the given circle.

Circle.
Equation: $(x-0)^{2}+(y-0)^{2}=(2 \sqrt{5})^{2}$
Substitute Given $\int \begin{aligned} & x^{2}+y^{2}=20 \\ & (-3)^{2}+(\sqrt{11})^{2}=20\end{aligned}$ Yes, $(-3, \sqrt{11})$ is on this 0
point $(-3, \sqrt{11}) \int(-3)+111=202$

Equation: $(x-2)^{2}+(y-4)^{2}=(3 \sqrt{3})^{2}$

$$
N_{0}-(6,3)
$$

Simplify: $(x-2)^{2}+(y-4)^{2}=27$ did not
Substitute: $(6-2)^{2}+(3-4)^{2}=27$ dian ot the

$$
(4)^{2}+(-1)^{2}=27
$$

Try It! Graph a Circle from lis Equation equation. This point is Not on the $($
4. What is the graph of each circle?
$\begin{array}{ll}\text { a. }(x+2)^{2}+y^{2}=25 & \text { b. }(x+1)^{2}+(y-2)^{2}=1 \quad r=1 \\ \text { center }(-2,0) \text { radius }=5 & \text { center }(-1,2) \quad r=1\end{array}$
b. $(x+1)^{2}+(y-2)^{2}=1$


EXAMPLE 5 . (5) Try It! Use the Graph and Equation of a Circle to
Solve Problems
5. If one or both of the existing radar stations could be moved, would three radar stations be sufficient to cover all the towns? Explain.
Doppler radar stations are currently located ot Grafton and Meyersvile. If the radar station at Grafton was moved to Fairfield, then a third radar station could be placed at Davis and then all towns would be covered by each Doppler radar's maximum reach which mabrso orating is a radius length of 90 miles.
Use Structure How can you verify that an equation of a circle agrees with the graph of the circle? © MP.7

Select and test points on the circle by substituting them into the equation for the circa.

