## Geometry: 9.1-Simplifying Radicals Day 1


(13)

$$
\begin{aligned}
& \text { 3) } \begin{array}{l}
(2 \sqrt{5})^{2} \\
2^{2}(\sqrt{5})^{2} \\
4.5 \\
20
\end{array}
\end{aligned}
$$

(14)

$$
(3 \sqrt{2})^{2}
$$

(15)

$$
3^{2} \cdot(\sqrt{2})^{2}
$$

$$
\frac{9.7}{18}
$$

$$
\begin{aligned}
& \text { 5) } \\
& 2^{2} \cdot(\sqrt{105})^{2} \\
& 4 \cdot 105
\end{aligned}
$$

Adding/Subtracting Radicals - you can only combine radicals with the same radicand

$$
\begin{gathered}
\text { (16) } 1 \sqrt{5}-2 \sqrt{5}+9 \sqrt{5} \\
(1-2+9) \sqrt{5} \\
8 \sqrt{5}
\end{gathered}
$$

(18) ${ }^{2} \sqrt{8}+2 \sqrt{3}-10^{2} \sqrt{8}$
$4^{\prime}(2) \quad 4^{\prime}(2)$

$$
\begin{gathered}
6 \sqrt{2}+2 \sqrt{3}-20 \sqrt{2} \\
\frac{(6-20) \sqrt{2}+2 \sqrt{3}}{-14 \sqrt{2}+2 \sqrt{3}}
\end{gathered}
$$

(20) $3 \sqrt{6 x}-5 \sqrt{6 x}$

$$
(3-5) \sqrt{6 x}
$$

$$
-2 \sqrt{6 x}
$$

(17) $6 \sqrt{7}+1 \sqrt{14}-5 \sqrt{14}-12 \sqrt{7}$

$$
\frac{(6-12) \sqrt{7}+(1-5) \sqrt{14}}{[-6 \sqrt{7}-4 \sqrt{14}]}
$$


$12 \sqrt{3}-36 \sqrt{3}+15 \sqrt{2}+60 \sqrt{2}$

$$
75 \sqrt{2}-24 \sqrt{3}
$$

$$
\begin{aligned}
& \text { 212 }_{5 \sqrt{25}}^{2 \sqrt{25 y}}+\sqrt[3]{28 y}-\sqrt{324 y}-2 \sqrt[3]{63 x} \\
& 10 \sqrt{y}+6 \sqrt{7 y}-18 \sqrt{y}-6 \sqrt{7 x} \\
& -8 \sqrt{y}+6 \sqrt{7 y}-6 \sqrt{7 x}
\end{aligned}
$$

Geometry: 9.1 - Simplifying Radicals Day 2
Dividing Radicals: $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$ If dividing two radicals with same index, just divide the radicands!


Fora radical expression to be completely simplified:

1. All perfect squares must be factored out of radicand
2. NO FRACTIONS left under a radical sign!
3. NO RADICALS left in the denominator of a fraction!

Warm-up: Simplify completely.
(1) $\sqrt{2} \cdot \sqrt{2}$
(2) $\sqrt{5} \cdot \sqrt{5}$
$(\sqrt{5})^{2}$
$(\sqrt{2})^{2}$
(3.) $\sqrt{15} \cdot \sqrt{15}$
$(\sqrt{15})^{2}$
(4) $\sqrt{237} \cdot \sqrt{237}$
$(\sqrt{237})^{2}$
2
5


237
Simplify completely - remember the rules about fractions!
(5) $\frac{\sqrt{60}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$

(8) $\sqrt{\frac{8}{6}} \sqrt{\frac{4}{3}}$
(6) $\sqrt{\frac{18}{8}} i_{2}^{i} \sqrt[3]{\frac{9}{4}}$ or $\frac{3 \sqrt{2}}{2 \sqrt{2}}$

(9) $\frac{6}{5 \sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}$
(10) $\frac{4}{\sqrt{24}}=\frac{4}{6}$
$\frac{\sqrt{4}}{\sqrt{3}}=\frac{2}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}$
$\frac{2 \sqrt{3}}{3}$



$$
\begin{aligned}
& \text { 11) } \frac{10}{3 \sqrt[2]{40}}<4 \\
& \frac{10}{6 \sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}} \\
& \frac{12 \sqrt{10}}{6 Q}=\frac{\sqrt{10}}{6}
\end{aligned}
$$

(12) $\frac{\sqrt{75}}{\sqrt{50}}<\begin{gathered}25 \\ 3 \\ 25 \\ 2\end{gathered}$

$$
\frac{5 \sqrt{3}}{5 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}
$$

$$
\frac{\sqrt{6}}{2}
$$

Solving Equations: Solve for x .
All quadratic equations have fWO solutions.
(14.)

$$
\begin{aligned}
& \text { (144 } \begin{array}{l}
x^{2}-49=0 \\
x^{2}=49 \\
\sqrt{x^{2}}=\sqrt{49} \\
x= \pm 7
\end{array}, ~
\end{aligned}
$$

$$
\begin{aligned}
& \text { (15) } x^{2}-45=0 \\
& x^{2}=45 \\
& \sqrt{x^{2}}= \pm \sqrt[3]{45} \sqrt{9} \\
& x= \pm 3 \sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 17. } 16 x^{2}-13 x=19 x \\
& 16 x^{2}-32 x=0 \\
& 16 x(x-2)=0 \\
& 16 x=0 \quad x-2=0 \\
& x=0 \quad x=2 \\
& x=\{0,2\}
\end{aligned}
$$

$$
\begin{gathered}
x^{2}-5 x=24 \\
(x-8)(x+3)=0 \\
x=\{-3,8\}
\end{gathered}
$$

$$
\begin{aligned}
& 18 x^{2}-15 x=7 x \\
& \begin{array}{l}
8 x^{2}-22 x=0 \\
2 x(x-11)=0 \\
2 x=0 \quad x-11=0 \\
x=0 \quad x=11 \\
x=\{0,11\}
\end{array}
\end{aligned}
$$

$$
\text { 21. } 2 x^{2}+12 x+36=x^{2}
$$

$$
\begin{gathered}
x^{2}+12 x+36=0 \\
(x+6)(x+6)=0 \\
(x+6)^{2}=0 \\
x=-6
\end{gathered}
$$

Why wont zero work

$$
\text { (22) } \begin{aligned}
& x^{2}+11 x+(4 \sqrt{3})^{2}=(3 \sqrt{2})^{2} \\
& x^{2}+11 x+(16 \cdot 3)=(9 \cdot 2) \\
& x^{2}+11 x+48=18 \\
& x^{2}+11 x+30=0 \\
& (x+5)(x+6)=0 \\
& x=\{-5,-6\}
\end{aligned}
$$

Solve by factoring:
(1) $m^{2}-5 m=14$

$$
m^{2}-5 m-14=0
$$

$$
\begin{aligned}
& m^{2}-5 m-14=0 \\
& (m+2)(m-7)=0 \quad m=\{-2,7\}
\end{aligned}
$$

(2.)

$$
\begin{array}{r}
x^{2}=-4 x-3 \quad x^{2}+4 x+3=0 \\
(x+3)(x+1)=0 \quad x=\{-1,-3\}
\end{array}
$$

Use the Quadratic Formula to Solve:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Remember!
First make sure the equation is written in the form: $A x^{2}+B x+C=0$

$$
\begin{aligned}
& \text { 3. } 2 x^{2}-21 x-36=0 \\
& A=2 \\
& x=\frac{21+27}{4}=\frac{48}{4}=12 \\
& x=\frac{21-27}{4}=-\frac{4}{4}=-\frac{3}{2}
\end{aligned}
$$

$$
x=-(-21) \pm \sqrt{(-21)^{2}-4(2)(-36)}
$$

$$
x=\left\{12,-\frac{3}{2}\right\}
$$

$$
\begin{aligned}
& \sqrt{441+288} \\
& \sqrt{729}=27
\end{aligned}
$$

$$
\begin{aligned}
& 2 w^{2}-11 w=-12 \\
& 2 w^{2}-11 w+12=0 \\
& A=2 \quad B=-11 \quad C=12 \\
& w=\frac{11+5}{4}=\frac{16}{4}=4 \\
& w=\frac{11-5}{4}=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

$$
\begin{gathered}
W=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(2)(12)}}{2(2)} \\
W=\left\{4, \frac{3}{2}\right\} \quad \sqrt{121-96} \\
\sqrt{25}=5
\end{gathered}
$$

$$
\begin{aligned}
& 3 h^{2}+17 h=-10 \\
& 3 h^{2}+17 h+10=0 \\
& A=3 \quad B=17 \quad C=10 \\
& h=\frac{-17+13}{6}=-\frac{4}{6}=-\frac{2}{3} \\
& h=\frac{-17-13}{6}=\frac{-30}{6}=-5
\end{aligned}
$$

$$
\begin{aligned}
& h=\frac{-(17) \pm \sqrt{(17)^{2}-4(3)(10)}}{2(3)} \\
& h=\left\{-\frac{2}{3}-5\right\} \quad \sqrt{289-120} \sqrt{169}=13
\end{aligned}
$$

$$
2
$$

