MODEL \& DISCUSS
A search-and-rescue team is having a nighttime practice drill. Two members of the team are in a helicopter that is hovering at 2,000 feet above ground level.

A. The team first tries to locate object A. At what angle from the horizontal line even with the helicopter should they position the spotlight so that it shines

$$
\begin{aligned}
\tan A & =\frac{2000}{32 \phi 0} \\
A & =\tan ^{-1}(5 \div 8) \\
m \nsim A & \approx 32^{\circ}
\end{aligned}
$$

B. Next, they shine the spotlight on object B. How does the angle of the spotlight from the horizontal line change?

The angle of depression increases.
C. Use Structure in general, how does the angle of the spotiight from the horizontal change as the light moves from object A to object B ? From object A to object C? © MP. 7
The angle of depression increases for objects that are closer to the helicopter and decreases to spot objects farther away.

HABITS OF MIND
Use Structure What geometric figures are useful in modeling situations where you Want to find angle measures Why are these figures helpful? :(3) MP. 7
Triangles! missing side lengths and angle measures can be determined by using the Pythagorean Th, Trigonometric ratios, the Law of sines, and the Law of Cosines.

$$
\begin{aligned}
& (A I A \cong) \\
& \angle 1 \operatorname{and} \not \subset 2
\end{aligned}
$$

are \cong
since the horizons are parallel lines, the yare \cong alternate interior angles

Try It

$$
\text { 424 A } \begin{array}{rl}
180 & x \\
\tan 23 & =\frac{180}{x} \\
x \tan 23 & =180 \\
x & =\frac{180}{\tan 23} \\
x & \approx 424 \mathrm{ft}
\end{array}
$$

HABITS OF MIND
 depression, is the transversal.

EXAMPLE 3
2. Try It! Use Trigonometry to Solve Problems
45.0
3. In Example 3, how far is the student from the instructor at the
resting point?

$$
\begin{gathered}
\frac{\sin 4}{x}=\frac{\sin 165}{61} \\
\frac{(\sin 165) x}{\sin 165}=\frac{61(\sin 4)}{\sin 165} \\
x \approx 16.4 \mathrm{ft}
\end{gathered}
$$

$$
\Delta T=180-(165+4)=11^{\circ}
$$

$$
\frac{\sin 165}{61}=\frac{\sin 11}{C R}
$$

$$
\begin{aligned}
& 61 \\
& \left.C R(\sin 165)=\frac{61(\sin 11)}{\sin 1165}\right) \\
& \hline C R \approx 45 \mathrm{ft}
\end{aligned}
$$

$C R \approx 45 \mathrm{ft}$
Try It! Use Trigonometry to
4. a. What is the area of $\triangle K K L$?

$$
52.46 u^{2}
$$

$$
A=\frac{1}{2}(9)(15)(\sin 51)
$$

Or use Law of Cosines, then 5

$$
\begin{aligned}
A & =\frac{1}{2}(9)(15)(\sin 51) \\
& =\frac{1}{2}(135)(\sin 51)
\end{aligned}
$$

Heron's Formula.

$$
\approx 52.5 u^{2}
$$

$$
\begin{gathered}
\text { Heron's } \begin{array}{c}
x^{2}=15^{2}-2(9)(15)(\cos 51) \\
81+225-270(\cos 51) \\
306-169.917 \\
\sqrt{136.083} \\
11.7]
\end{array} .
\end{gathered}
$$

$$
\begin{aligned}
& A=\sqrt{1785(1.85-15)(17.85-9)(17.85-11.7)} \\
& A=\sqrt{1785(2.85)(8.85)(6.15)}
\end{aligned}
$$

$$
\begin{aligned}
& A=1785(7,685(885)(6,15) \\
& A=\sqrt{1785(28.863} \\
& A=\sqrt{2768.843}
\end{aligned}
$$

$$
\begin{aligned}
& A=52.6 u^{2} \\
& A
\end{aligned}
$$

$$
\begin{gathered}
P=9+15+1.7 \\
24+1.7 \\
35.7 \\
\left.A=\frac{1}{2} b c \sin A\right) \\
A=\frac{1}{2} a c(\sin B \\
A=\frac{1}{2} a b \sin O
\end{gathered}
$$

$$
s=17.85
$$

$$
\begin{array}{ll}
& \begin{array}{l}
4^{2}=8^{2}+10^{2}-2(8)(10) \cos P \\
16=164-160 \cos P)
\end{array} \\
A=\frac{1}{2}(10)(8)(\sin 22.3)^{R} & \frac{-148}{-160}=-\frac{160(\cos P)}{-160} \\
=40(\sin 22.3) & \quad 925=\cos P \\
A \approx 15.2 \mathrm{u}^{2} & P=\cos ^{-1}(.925) \\
P=22.3^{\circ}
\end{array}
$$

b. What is the area of $\triangle P Q R$? Hint: First apply the Law of Cosines to find the measure of the angle included between $P Q$ and $P R$. Then apply the

$$
15.20 u^{2}
$$ area formula with the sine of the angle measure.

HaBITS OR JALIND
Reason. What quantities do you need to know if you want to apply the Law of Sines or Cosines to solve a problem? (Q) MP. 2
Law of Sines: Need any two angles and a side or 2 sides with an opposite angle Law of Cosines: SAS or SSS

