

Find the value of $x$


If three parallel lines intersect two transversals, then they divide the
transversals proportionally.

Find the value of $x$.

(8.)

(9)


Triangle Angle-Bisector Theorem

> If a ray bisects an angle of a triangle, then it divides the opposite side into segments proportional to the. other two sides.

Find the value of $x$.

[然偖 $\frac{x}{24}=\frac{12}{18} 2^{2}$ side

$$
\frac{3 x}{3}=\frac{48}{3}
$$

$x=16$
$\begin{aligned} & \frac{\text { side }}{\operatorname{seg}} \frac{x}{8}=\frac{12.5}{10} \\ & \frac{10 x}{18}=\frac{100}{10} \\ & x=10\end{aligned}$

21


| side |
| :---: |
| $32 g$ |

$\frac{10}{x}=\frac{20}{15-x}$
$20 x=150-10 x$
$\frac{30 x}{30}=1 \frac{50}{3 \phi}$

## Theorem Worksheet 8.5

heorem 65: (Triangle Proportionality Theorem)
If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally. (a.k.a.: Side-Splitter Theorem)
(1) Find $x$ given that $\overline{P Q} \| \overline{B C}$.

(2) Find $x$ given that $\overline{A E} \| \overline{B D} \quad$ Check


- $\frac{x}{15}=\frac{5}{11}$
$\frac{11 x}{N}=\frac{75}{11}$
$x=6 \frac{9}{11}$

Converse of Theorem 65: (Side - Splitter Converse)
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.
(3) Is $P Q$ parallel to $B C$ ?

$144=144$
Yes.g.gside. Splitter rh w $^{1}$ $\overline{P_{Q}} \| \vec{x}$ !

22
(4) Is $A E$ parallel to $B D$ ?
 $88 \neq 75$

No l AE YBD

How is the "Midline Theorem" (7.1) a bit different from the "Side-Splitter Theorem" (8.5)? The endpoints of a Midline are midpoints of two sides of $\triangle$. Both split sides of $\Delta$ into segments. Hat are proportioned, and the segment is 11 to third side. whet thor a Midline or


## Theorem 66: (Proportionality with Parallel Lines and Tranversal Lines)

If three parallel lines intersect two transversals, then they divide the transversals proportionally. [Related to Side-Splitter Theorem - see page 351)
5.) Solve for $x$.
$\frac{15}{x}=\frac{45}{18} \frac{50}{20}$

6. Solve for $x$.


## Theorem 67: Triangle Angle Bisector Theorem

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides of the angle.
(7.) Find $A D$ if $\overrightarrow{B D}$ bisects $\angle A B C, B C=15, C D=9$, and $A B=18$.


Proportions:
set-up

- Either ~

$$
\frac{\operatorname{Adj} 1}{\operatorname{Adj} 2}=\frac{\operatorname{Seg} 1}{\operatorname{Seg} 2}
$$

~ or ~
$\frac{\operatorname{Adj} 1}{\operatorname{Seg} 1}=\frac{\operatorname{Adj} 2}{\operatorname{Seg} 2}$
AND
They can both be overturned or flipped around, too!


