EXPLORE \& REASON
Use $\triangle A B C$ to answer the questions.

A. Write equations for the side lengths of $\triangle A B C$ and $\triangle C B D$ using the Pythagorean Theorem.
$\triangle A B C$

$$
x^{2}+h^{2}=10^{2}
$$

$$
h^{2}=10^{2}-x^{2}
$$

$$
\begin{aligned}
& \triangle C B D \\
& h^{2}+11^{2}=14^{2} \\
& h^{2}=14^{2}-11^{2}
\end{aligned}
$$

$$
h^{2}=10^{2}-x^{2} \quad \quad h^{2}=14^{2}-11^{2}
$$

B. Use a system of equations to solve for x.

$$
\begin{array}{rlr}
10^{2}-x^{2} & =14^{2}-11^{2} \\
-x^{2} & =14^{2}-11^{2}-10^{2} & \sqrt{x^{2}}=\sqrt{25} \\
-x^{2} & =196-121-100 & x=5 \\
-\frac{x^{2}}{-1} & =\frac{-25}{-1} &
\end{array}
$$

C. Use Structure How can you use the information you found

Yes, $\triangle A B C$ is a $30-60-90 R+\triangle$ since one leg is half the hypotenuse, X A must be 60° because the short $\operatorname{leg}(5)$ is across from $X C\left(30^{\circ}\right)$.
marts of mid id Or use $\cos A=\frac{5}{10} \Rightarrow \cos A=0.5$, and $A=\cos ^{-1}(.5)$
Look for Relationships Does constructing an altitude in a triangle always divide

$$
\angle A=60^{\circ}
$$ a triangle into similar triangles? Explain. © MP. 7

No - not necessarily: If an attitude is drawn to the hypotenuse of a right triangle, then the result is three similar right triangles. Or, if an altitude is dropped in an isosceles triangle, the resulting right triangle are similar/congrueit to each of the IESSON 8-4 The Law of Cosines 190

EXAMPLE 1 (1) Try It! Develop the Law of Cosines with Trigonometry

1. Use the same method as in Example 1 to write equations for a^{2} using $\cos A$

$$
\begin{array}{ll}
\triangle A B D & \triangle A C D \\
c^{2}=(a-x)^{2}+h^{2} & b^{2}=\left\{x^{2}+h^{2}\right. \\
c^{2}=a^{2}-2 a x+x^{2}+h^{2} & \\
c^{2}=a^{2}-2 a x+b^{2} & a^{2}=b^{2}+c^{2}-2 b c(\cos A) \\
\left(\begin{array}{ll}
\text { Now: } \cos C=\frac{x}{b} & b^{2}=a^{2}+c^{2}-2 a c(\cos B) \\
\begin{array}{ll}
\text { and } x=b(\cos C)
\end{array} & c^{2}=a^{2}-2 a(b \cos C)+b^{2}
\end{array}\right. &
\end{array}
$$

rearrange: $c^{2}=a^{2}+b^{2}-2 a b(\cos C)$

EXAMPLE 2 (8) Try It! Use the Law of Cosines to Find a Side Length 2. a. What is $D E$?
b. What is GH?

$$
\begin{aligned}
f^{2} & =8^{2}+6^{2}-2(8)(6)(\cos 62) \\
f^{2} & =64+36-96(\cos 62) \\
f^{2} & =100-45.1 \\
\sqrt{f^{2}} & =54.9 \\
f & \approx 7.4
\end{aligned}
$$

$$
\begin{aligned}
j^{2} & =12^{2}+18^{2}-2(12)(18)(\cos 110) \\
j^{2} & =144+324-432(\cos 110) \\
j^{2} & =468-(-147.8) \\
j^{2} & =\sqrt{615.8} \\
j & \approx 24.8
\end{aligned}
$$

EXAMPLE 3 (c) Try It! Use the Law of Cosines to Find an Angle Measure 3. a. What is $m \angle X$?
b. What is $m \angle P$?

$$
\begin{array}{l|l}
4^{2}=6^{2}+7^{2}-2(6)(7)(\cos x) & 13^{2}=8^{2}+11^{2}-2(8)(11)(\cos P) \\
16=36+49-84(\cos x) & 169=64+121-176(\cos P) \\
16=85-84(\cos x) & 169=185-176(\cos P) \\
\frac{-85}{-85}=\frac{-85}{-84(\cos x)} & \frac{-185}{-84}=\frac{-185}{-176}=\frac{-176(\cos P)}{-176} \\
\frac{-84}{-814}=\cos x & .0909=\cos P \\
x=\cos ^{-1}(.8214) \approx 34.8^{\circ} & P=\cos ^{-1}(.0909) \approx 84.8^{\circ}
\end{array}
$$

$x=\cos ^{-1}(.8214) \approx 34.80$ Try It! Use the Law of Cosines to Solve a Problem
4. In Example 4, what is the angle that the new path forms with the old path

at Bald Mountain?

$$
1.4^{2}=1.6^{2}+2.1^{2}-2(1.6)(2.1)(\cos B)
$$

$$
1.96=2.56+4.41-6.72(\cos B)
$$

$$
\begin{aligned}
& \text { new } \\
& \text { Path }
\end{aligned}
$$

$$
\begin{aligned}
& 1.96=6.97-6.72(\cos B) \\
&-6.97
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-6.97}{-6.72}=\frac{-6.72(\cos B)}{-6.72} \\
& .7455=\cos B \\
& B=\cos ^{-1}(.7455) \approx 41.8^{\circ}
\end{aligned}
$$

HABITS OF MIND
Make Sense and Persevere How can you determine whether the Law of cosines can be used to solve a real-worid problem? @MP.1
SSS. If the lengths of the three sides of a triangle are known... solve for k 's!
SAS - If two sides and the included angle are known, the law of Cosines Can be used to find the third side then use Law of Sines for another angigle. 201

