
ratios related?

$$
\begin{aligned}
& \frac{(\sin 60)}{\left.\frac{505}{}\right)} \frac{\frac{5 \sqrt{3}}{10}}{B C}=\frac{5 \sqrt{3}}{10} \cdot \frac{1}{5 \sqrt{3}}=\frac{1}{10}< \\
& \frac{5 \sqrt{3}}{1} \\
& \frac{\sin 30)}{A B}=\frac{\frac{5}{10}}{\frac{5}{1}}=\frac{5}{10} \cdot \frac{1}{5}=\frac{1}{10}
\end{aligned}
$$

The ratios ave equal

$\sin 60=\frac{b}{c}$
$\sin 30=\frac{a}{c}$
$\frac{\frac{b}{c}}{b} \frac{\frac{a}{c}}{a}$
$\frac{b}{c} \cdot \frac{1}{x} \frac{x}{c} \cdot \frac{1}{x}$

$$
\frac{1}{c}=\frac{1}{c}
$$

EXPLORE \& REASON
Consider the $30^{\circ}-60^{\circ}-90^{\circ}$ triangle shown.

B. Make Sense and Persevere Do you think the ratios would have the same relationship in any $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle? Explain your answer. © MP.

Yes - since the side ratios for any 30-60-90 triangle follow the ratio $1-\sqrt{3}-2$, the law of sines states that the sine ratio for any angle when divided by the side length opposite the reference angle will always be the same for any angle of the triangle. Hares or mind

The comparison (r afros $)$ © mp:?
The comparison (ratio) of the sine of the angle to the length of the opposite side from the angle is the same. for every angle of the triangle.

Try It! Explore the Sin R Ratio
. For Eh ow that $\frac{\sin A}{b}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

$$
\begin{aligned}
& \frac{\sin A}{a} \quad \frac{\sin B}{b} \quad \frac{\sin C}{c} \\
& \sin A=\frac{k}{c} \quad \sin B=\frac{h}{c} \quad \sin C=\frac{k}{a} \\
& c(\sin A)=k \\
& \frac{k(\sin C)}{}=\frac{k}{a} \\
& \frac{\sin A}{a}=\frac{k(\sin C)}{c}=\frac{\sin C}{c}
\end{aligned}
$$

If $\frac{\sin B}{b}=\frac{\sin C}{c}$ and $\frac{\sin C}{c}=\frac{\sin A}{a}$, then by transitive property $\frac{\sin A}{a}=\frac{\sin B}{b}$ KAMPLE 2 2.- Ty y It Use the Law of Sines to find a Side Length

$$
\begin{aligned}
& \frac{\sin 77}{7}=\frac{\sin 52}{x z} \\
& \frac{.9744}{7}=\frac{.788}{x z} \\
& \frac{.9744(x z)}{}=\frac{5.516}{.9774} \\
& \overline{x z} \approx 5.7 u
\end{aligned}
$$

HABITS OF MIND
Reason How can you use the Law of Sines if given the measures of two angles
and the length of the included side? (e) MP.2 As i"-
As in "Try It"\#2, if you know two angle measures, subtract thier sum from 180 to find the third angle.
${ }_{206}$ Topics right Triangles and Trigonometry [Triangle Sum Theorem]

EXAMPLE 3 (c) Try It! Use Law of Sines to Find the Measure of an Angle 3.

a. What is m LN?
b. What is $m \angle O$?

$$
\begin{aligned}
& \frac{\sin N}{2}=\frac{\sin 70}{4} \\
& \frac{\sin N}{2}=\frac{.9397}{4} \\
& \sin N=2(.2349) \\
& \frac{M N \approx \sin ^{-1}(.4698)}{m \angle N \approx 28^{\circ}}
\end{aligned}
$$

$$
180-(70+28)
$$

$$
180-(98)
$$

$$
820
$$

EXAMPLE 4. Try lit Apply the Law of Sines
4. Suppose the pilot chose to fly north of the storm. How much farther is that route than the direct route?

Communicate Precisely What information do you need in order to use the Law of Sines to solve a problem? (©) MP. 6
Youmust know:
either. two angles and length of one side
or . two sides and measure of one non-included angle.

