Geometry: 7.4 -Regular Polygons/
A regular polygon is a polygon that is \qquad Equilateral and \square Equiangular

Question: For a polygon, if all the interior angles are \cong, will all the exterior angles be \cong ?
es!

1. Always, Sometimes, or Never? A regular quadrilateral is a square. \qquad Always
2. Always, Sometimes, or Never? A rhombus is regular) (if a square) Sometimes
3. Always, Sometimes, or Never? An equilateral triangle is regular. Always
4. Always, Sometimes, or Never? In a regular polygon, any interior angle and any exterior angle are supp. \qquad
5. For a regular octagon, find the measure of:

a) one angle

$$
n=8
$$

$$
\begin{aligned}
& \text { one angle } 180=S_{i} \\
& (8-2)(180 \\
& \hline
\end{aligned}
$$

b) one exterior angle

$$
\text { All angles } \cong \text { so }
$$

$$
(6) 180
$$

$$
1080^{\circ}
$$

shat Find this

$$
\text { WW } \rightarrow \text { FiRST! }
$$

$$
\begin{aligned}
& E=\frac{360}{8} \\
& E=45^{\circ}
\end{aligned}
$$

* Shorter l b

$$
S_{e}=360^{\circ} \text {, so }
$$

a) \qquad 135°

$$
I+E=180
$$

6. Find the number of sides of a regular polygon if:
a) one exterior $\angle=30$ g
b) one exterior $\angle=40^{\circ}$

$$
\frac{360}{x}=30
$$

$$
\frac{30}{30} n=\frac{360}{30}
$$

$$
\frac{360}{x}=40
$$

$$
\begin{gathered}
40 n=\frac{360}{40} \\
\frac{40}{40} \\
n=9
\end{gathered}
$$

c) one interior $\angle=120^{\circ}$

$$
\begin{aligned}
E & =180-\pi \\
& =180-120 \\
E & =60^{\circ}
\end{aligned}
$$

a) \qquad $n=12$
b) \qquad $n=9$
c) \qquad $-14-$

$$
\begin{aligned}
& \text { Summary: For an equiangular polygon with } n \text { sides, exterior angle } E \text {, and interior angle } 1 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& I=\frac{1080}{8} \text { * } \text { Ht }^{n} I=180-E \\
& I=135^{\circ} \\
& =180-45 \\
& =135
\end{aligned}
$$

d) one int. $\angle=160^{\circ}$

$$
\begin{array}{r}
E=180-160 \\
E=20
\end{array}
$$

e) one int. $\angle=15^{\circ}$

$$
\begin{gathered}
E=180-15 \\
E=165
\end{gathered}
$$

$$
\begin{gathered}
\frac{360}{n}=20 \quad \frac{20 n=\frac{360}{20}}{\frac{20}{n}=18} \\
\frac{360}{n}=165 \begin{array}{r}
\frac{165 n}{165}=\frac{360}{165} \\
n=2.18
\end{array}
\end{gathered}
$$

d)
$n=18$
e) impossible
7. For a regular $50-$ gone, find the measure of one exterior and one interior angle.

$$
\begin{aligned}
& E=\frac{360}{50} \\
& E=7.2
\end{aligned}
$$

$$
\begin{aligned}
& I=180-7.2 \\
& I=172.8
\end{aligned}
$$

$$
\text { one ext. } \angle=7.2^{\circ}
$$

one int. $\angle=$ \qquad 172.8°
8. Find the \# of diagonals for an equiangular polygon with an angle of 170°.
8. $\frac{594}{\text { diagonals }}$

$$
\begin{array}{ll}
I=170 \\
E=180-170 & n=\frac{360}{10} \\
E=10 & n=36
\end{array} \quad d=\frac{36(36-3)}{2}
$$

8. 26 9. Find the measure of one exterior angle of a regular polygon whose \# of diagonals
9. 22.5° is sixteen less than one-third of its exterior angle sum.

$$
\begin{array}{ll}
\frac{n(n-3)}{2}=\left(\frac{360}{3}\right)-16 & \begin{array}{l}
n^{2}-3 n-208=0 \\
(n+13)(n-16)=0 \\
n^{2}-3 n \\
2
\end{array} 120-16 \\
n=\{-3 n, 16)\} \\
n^{2}-3 n=208 & E=\frac{360}{16}=22.5^{\circ}
\end{array}
$$

10. In a polygon, the ratio of each interior angle to each exterior angle is 11 to 1.10 . \qquad 24-gon Give the name of this polygon.

$$
\frac{\left(15^{\circ} \times 1 \begin{array}{l}
\text { interior } \\
11 \times 5 \\
180-15 \\
165^{\circ}
\end{array}\right)}{\left(\begin{array}{l}
1+2
\end{array}\right)}
$$

$$
\begin{array}{rr}
x+11 x=180 \\
\frac{12 x}{2 x} 12 \\
x=15 & n=\frac{360}{15} \\
n=24
\end{array}
$$

$$
-15-
$$

Chapter 7.4 Regular Polygons
Regular Polygon (definition): a polygon that is both equilateral and equiangular.
In other words, all the sides are congruent and all the angles are congruent.

* Note: If all the interior angles are congruent, then so are all the exterior angles. To find the measure of each exterior angle, divide 360 by the number of sides.
* Formula: $\left\{E=\frac{360}{n}\right\}$
* Formula: $I=$ supplement of E or $\frac{(n-2) 180}{n}$

1. What is the measure of each exterior angle of a regular decagon?
$n=10$

$$
E=\frac{360}{n}=\frac{360}{10}=36^{\circ}
$$

2. If each exterior angle of a polygon is 24°, then how many sides does the polygon have?

$$
n=? \quad n=\frac{360}{E}=\frac{360}{24}=15 \text { (pentadecagon) }
$$

3. In the phrase "each angle of a polygon," does the word "each" refer to an exterior or an interior angle?
"each angle" refers to the intenor angles
4. What is the measure of each angle of a regular octagon?

$$
\begin{aligned}
\bar{n}=8 \quad \frac{360}{8}=45 \quad \begin{aligned}
I & =180-E \\
& =180-45 \\
I & =1350 \\
& \\
& 1^{4 .}
\end{aligned}
\end{aligned}
$$

5. The sum of the measures of the interior angles of a polygon is four times the sum of the measures of its exterior angles. How many sides does the polygon have?

$$
\begin{array}{r}
\frac{(n-2) 180}{180}=\frac{4\left(3^{2} 60\right)}{180} \quad n-2=8 \\
n=10
\end{array}
$$

6. The measure of each interior angle of a regular polygon is eight times that of an exterior angle. How many sides does the polygon have?

$$
\begin{array}{clr}
\text { Let exterior angle }=x & x+8 x=180 & \text { Now: } n=360 / 20 \\
\text { Interior angle }=8 x & 9 x=180 & n=18 \\
x=20 &
\end{array}
$$

7. Complete the table below for each regular polygon named.

