Geometry: 7.3 - Polygons and Angle Sums

\# of sides	name	\#ofsides	name
5	Pentagon	9	Nona gov
6	Hex gov	10	Deck goa
7	Hepta gon	12	Dodeca gon
8	Octal gan	15	Pentadeca goo
All other polygons with n sides will be called n-gons.	Example: 24-gon		

For any (convex) polygon with n sides:

Exterior \angle Sum

$$
S_{\mathrm{e}}=3600^{A} \mathrm{LWA}+\mathrm{P}=\frac{n(n-3)}{2}
$$

DIRECTIONS: Draw the diagonals. Count the number of UNIQUE diagonals and record the number in the box below each figure. [Try to determine a pattern!]

\square 9 \square

$$
d=\frac{\frac{n(n-3)}{2}}{\frac{x^{5}(7)}{2}}
$$

7.3 Example Problem (Notes)

C
Examples $S_{i} \frac{\text { Formula }}{=(n-2) 180}$

$$
\begin{aligned}
& n=12 \\
& 5_{i}=(12-2) 180 \\
& 10) 180
\end{aligned}
$$

 a)

$$
\begin{aligned}
& \text { b) dodecagon } \\
& n=12
\end{aligned}
$$

$$
n=9 \quad S_{i}=(9-2) 180
$$

$(10) 180$
1800°
2. What is the name bf the polygon whose interior angles total $2,340^{\circ}$?
$\left\langle 0 \times 1 / S_{i}=(n-2)_{180}\right.$

$$
\frac{(n-2) 180}{180}=\frac{2340}{180}
$$

$$
\begin{gathered}
180 \\
x-2=13
\end{gathered}
$$

$$
n=15 \text { pentadecagon }
$$

3. How many diagonals can be drawn in a a) heptagon? $n=7$

$$
\text { र over } d=\frac{n(n-3)}{2}
$$

(a) $d=\frac{7(7-3)}{2}=\frac{7(n)}{2}$
(b) $d=\frac{20(20-3)}{2}=\frac{100(17)}{2}=170$

Yo merle $d=\frac{n(n-3)}{2}$
$d=\frac{n(n-3)}{2}$ came of the polygon that has a) 54 diagonals?

(a) $\frac{n(n-3)}{2}=54.2 \quad \begin{aligned} & n=12 \\ & \text { dodecagon }\end{aligned}$
b) 90 diagonals?

$$
\begin{aligned}
& \text { (b) } \frac{n(n-3)}{2}=90 \\
& n^{2}-3 n=180 \\
& n^{2}-3 n-180=0 \\
& (n+12)=1(x-15)=0 \\
& n=\{-150 \text { (15) }
\end{aligned}
$$

$$
\begin{aligned}
& n^{2}-3 n=108 \quad 180 \quad \\
& n^{2}-3 n-108=0 \quad
\end{aligned} \quad \begin{aligned}
& n^{2}-3 n=180 \\
& n^{2}-3 n-180=0
\end{aligned}
$$

$S_{i}=\left(\begin{array}{l}6 \text {. Find the number of sides for poly gen with an interior angle sum of } 4,820^{\circ} \\ (n-2) 180=4820\end{array}\right.$

$$
\begin{aligned}
& n^{2}-3 n=108 \\
& n^{2}-3 n-3 n=0 \\
&(n+9)(n-12)=0
\end{aligned}
$$

$\left.\begin{aligned} & \text { Equation: } \\ & \text { (step 1) }\end{aligned} \frac{(n-2) 186}{180}=\frac{8(366)}{180} \right\rvert\,$ Equation: $d=\frac{9(18-3)}{2}$

$$
\begin{array}{rlr}
n-2=16 \\
n=18 & & =9 \cdot 15 \\
-11- & & =135 \\
& =135 \\
\text { diagonals }
\end{array}
$$

Pencesaurefone of hie two remaining angles

Chapter 7.3 Formulas Involving Polygons

Names of Familiar Polygons

Formulas

1. sum of interior angles:
$\left.S_{,}=(n-2) \cdot 180\right\}$ where n is the number of sides
2. total number of diagonals:l

$$
\left\{D=\frac{n(n-3)}{2}\right\}
$$

8. sum of exterior angles:
L. $S_{i}=360 .($ always!) $\underbrace{\text { s }}$ Theorem $\# 56$.

Samples:

$$
S_{i}=(n-2) 180
$$

(1. What is the sum of the interior angles of an undecagon? ... a quadrilateral?

$$
\begin{aligned}
& S_{i}=(11-2) 180 \\
& =(9) 180 \\
& =1620^{\circ} \\
& n=11 \\
& \begin{aligned}
S_{i} & =(4-2) 180 \\
& =(2) 180
\end{aligned} \\
& \begin{aligned}
S_{i} & =(4-2) 180 \\
& =(2) 180
\end{aligned} \\
& =360^{\circ} \\
& n=4
\end{aligned}
$$

(2) Three of the angles of a pentagon are right angles. The two remaining angles are congruent. Find the measure of one of the two remaining angles.

$$
\begin{gathered}
\text { Step 1: } \\
n=5
\end{gathered} \quad \begin{aligned}
& S_{i}=(n-2) 180 \\
&(5-2) 180 \\
&(3) 180 \\
& S_{i}=540^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
2 x+3(90)=540 \\
2 x+270=540-270 \\
2 x=270 \\
2 \\
x=135^{\circ}
\end{gathered}
$$

What is the name of the polygon whose interior angles total 2340 ?

Formula: $d=\frac{n(n-3)}{2}$
$n=10$

$$
\begin{aligned}
d & =\frac{12(10-3)}{2} \\
& =5(7) \\
& =35 \text { diagonals }
\end{aligned}
$$

How many diagonals can be drawn in a decagon?
解 $n=7$

heptagon?
(5) What is the name of the polygon that has 104 diagonals?

$$
5=360^{\circ}+5=360
$$

\{ALWAYS!\}
(7) Complete the table using the formulas listed on the first page. See if you can observe a pattern.

always
7.3 Assign: Pp 309-311 (1-7;70-14; 17, 21)

