Any one of the following methods can be used to prove that a quadrilateral is a parallelogram: $\{5\}$ Methods
Draw an example to illustrate the meaning of following methods of proof:

1. If both pairs of opposite sides of a quadrilateral are parallel

2. If both pairs of opposite sides of a quadrilateral are congruent

3. If one pair of opposite sides are both parallel and congruent

4. If the diagonals bisect each other

5. If both pairs of opposite angles are congruent

5.6 Proving that a Quadrilateral is a Parallelogram

Geometry 5.6 - Proving a Quadrilateral is a Parallelogram
If we know a quadrilateral is a parallelogram, see know a number of properties about that parallelogram, specifically about its opposite sides, angles, and diagonals.

Now we are going to learn how to prove a quadrilateral is a parallelogram (\square), and it works out that if we can show that any one of the parallelogram properties apply to a given quadrilateral, then it must be a \square

So, the ways to prove a quad is a \square $\square:$
"Short way" is how to write
REASONS in proofs !

1. If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram. (The converse of the definition).
short wary s If both pairs opp sides II, then II gram
2. It both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
Stor way:. If both pairs opp sides \cong, then II gram
3. If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
sher way:. If both diagonals bis., then 11 gram
4. If bott pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
Shantung If both pair or k 's \cong, Hen 1 gram.

* 5. If one par of opposite sides of a quadrilateral is both parallel and congruent, then quad is a paralilologran
Short way. If one fair upsides both $11 £ \cong$, Han ll given
(Note: Recall that another property of \square s is that any pair of consecutive \angle s are supp. This would actually be a way to show a quad. is a \square as well, but it will never be used because there would always be a shorter way to prove it.)

Practice: Which, if any, of the quadrilaterals below can be shown to be a \square ?
a)

b)
 bis.

5.6 Proving that a Quadrilateral is a Parallelogram

Geometry Notes

1. Given: $\triangle B C D$ is isosceles, with base $\overline{C D}$.

$$
\begin{aligned}
& \bar{A} E \equiv \overline{B D} \\
& \angle C \cong \angle E
\end{aligned}
$$

Prove: ABDE is a

\{5\%Methods of Proof

- 2prsopp sides II
- 2prs opp side \cong
- 2 prs opp x's \cong eindurgands bisect

Reasons

1) $\triangle \overline{B C D}$ is isosc., base $\overline{C D}$
2) $\overline{B D} \cong \overline{B C}$
3) $\triangle B D C \cong X C$
4) $\Varangle C \cong \not \subset E$
5) $X B D C \cong X E$
*6) $\overline{A E} \| \frac{11}{B D}$
*7) $\overline{A E} \cong \overline{B D}$ 8) $A B D E$ is a
6) Given
7) the legs of isosc. $\Delta 5$ are \cong
8) If \triangle, then \triangle
9) Given
10) Transitive Property
11) Corres x 's $\cong \Rightarrow 11$ lines
12) Given
13) If quad has one par of sides both $\cong \nsubseteq I_{j}$ then \angle
2. Given: ACDF is a \square

$$
\angle \mathrm{AFB} \equiv \angle \mathrm{ECD}
$$

Prove: FBCE is a \square

Reasons

1) Given
2) In $\square_{\text {, opp. } x: \text { stare } \cong}^{\cong}$
3) Given
4) Subtraction Property
5) In \square, opp sides are \cong
6) same as \#2
7) $A S A(3,5,6)$
8) CPCTC
a) If 2 Xis form str X, then Supp
9) Same as \#9
ii) Supp of $\cong x^{\prime}$ are \cong
10) If quad has both pairs op px's \because, then
5.6 Proving that a Quadrilateral is a Parallelogram

Example:
1.) (HW problem \# 4 on pg. 252)

Given: RKMP is a parallelogram $\angle \mathrm{JRK} \cong \angle \mathrm{PMO}$
Prove: RJMO is a parallelogram

Statements
Reasons

5.6 Proving a Quadrilateral is a Parallelogram

5 ways to prove that a quad is a parallelogram:

1. if both pairs of opposite sides of a quad are $\| \rightarrow \infty$
2. if both pairs of opposite sides of a quad are $\cong \rightarrow 0$
3. if one pair of opposite sides of a quad is both $¥ / \| \rightarrow 0$
4. if both pairs of opposite angles of a quad are $\cong \rightarrow 0$
5. if the diagonals of a quad bisect each other $\rightarrow 0$

Problems:

1. Next to each method above, draw a diagram (or symbol) that depicts what the method is saying.
2. p. 251 \#1 $\begin{aligned} & \text { For each quadrilateral QUAD, state the property or definition (if there is one) that proves QUAD } \\ & \text { is a parallelogram. }\end{aligned}$ is a parallelogram.
3. In $\triangle A B C D$, the ratio of $A B$ to $B C$ is $5: 3$. If the perimeter of $A B C D$ is $32 y$ ind $A B$. 3

$$
\begin{aligned}
2(A B+B C) & =P \\
2(5 x+3 x) & =32 \\
\frac{2(8 x)}{2} & =32 \\
8 x & =16 \\
x & =2
\end{aligned}
$$

$$
\begin{aligned}
A B & =5 x \\
& =5(1)
\end{aligned}
$$

Check

$$
=5(2)
$$

$$
A B=10 u
$$

5. The measure of one angle of a parallelogram is 40 more than 3 times another. Find the measure of each angle.

A

* Note: Cant be congruect angles
must be same-side int Supp!

$$
\begin{array}{rlrl}
x+3 x+40 & =180 & \boxed{4 x} & =x=35 \\
\frac{4 x}{4}=\frac{140}{4} & & x B & =3 x+40 \\
x & =35 & & =3(35)+40 \\
& & =105+40
\end{array}
$$

6. Answer Always, Sometimes, or Never: A quadrilateral is a parallelogram if $\triangle B=14^{\circ}$
\qquad a. diagonals are congruent rectangle, square
\qquad b. one pair of opposite side are congruent and one pair of opposite sides are parallel. Isose.
sstss: 11 gram , rhombus, rectangle, square
\qquad c. each pair of consecutive angles is supplementary: 11 gram, rhombus, rectangle, square
d. all angles are right angles rect angle, square
d. all angles are right angles rectangle, square Kite Parallelogram
7. Find the value of x in the crook problem.

$$
\begin{aligned}
& x=90+55 \\
& x=145
\end{aligned}
$$

