
3.8 Notes: "The HL-Postulate"

Geometry Worksheet 3.8 Date: HL-Postulate UPI Postulate: If there exists a correspondence between the vertices of 2 rights triangles such that the hypotenuse and a leg of one triangle are congruent to the corresponding parts of the other triangle, the 2 right triangles are congruent by HL. * If using HL, then you do NOT To use HL, we must show in our proof: have to say the right dis ♦ 2 right angles, ¥ 2 corresponding hypotenuses and
 ≅ 2 corresponding legs 1. Given: GJ is an altitude to HK (4) 40 HG = KG (H) Prove: aHGJ maKGJ K Statements Reasons 1 GJ is an altitude to HK, 1. Given X2 LGJH & LGJK Crekter 2. An alt forms Kt L's on opp side of A 3. HG ≞ KG 3. Given (H) + GJ = GJ 4. Reflexive Prop (1) 5. HL (2;3,4) 5 aHGI ≅aKGJ 2. Given: OO OF is an altitude Prove: EF a FG Statements Reasons 1.00 1. Given 2 DREW DE & OG 2. Any 2 points determine a line. (4) 3. OE = OG 3. All redii of a O are = 4 OF is an altitude 4. Given 3. An alt forms Rt as on opp side of A ts LI+ L2 Welt L's OF = OF (L) 6. 6. Reflexive 7. HL (5; 3, 6) · ADEF = AOGF 8. CPCTC 8. EF = FG

Class Examples: 1 (and Ishel)	· · · · · · · · · · · · · · · · · · ·
Class Examples: Example 1) Drew! (and label) Given: ΔXYZ ; $(m \leq X) > (m \leq Y)$; $YZ = 13 - 2$	
Given: ΔXYZ ; $(m \leq X) > (m \leq Y)$; $YZ = 13 - 2x$, and $XZ = 3x + 18$ Find the restrictions on the value of x. $(Y \geq 7 \times 2)$ (shorter side 70)	
	34118 13 15 1
(be weth see to do (XTIS)	+ <u>2x</u> 3x7-18
-18 -18 -18 3 3 -18 -18 -18 3 -1	
13-2x Z -5>	Sx XX
Longerside -17x XX-1	
Example 2) Proof hw problem # 9 from pg. 159 Given: RK LHR,	
TO LPM. PR = PO. Subject	
$\overrightarrow{PH} \cong \overrightarrow{PM}$ Conclusion: $\overrightarrow{RK} \cong \overrightarrow{IO}$ H J K M	
Statements	Reasons
RKLHR	1. Grivien
* 2 KHEK is all 4	2. I Segs form Rt 4's 3. Given 4. Science
3 JO L PM	3. Given
, t & A MOJ is a et b	sume as #2
S GHRK = KMOJ (A)	All Rt AS COM
· PR = PO .	" Given
7. PH = PM .	7. Given
* $\overline{RH} \cong \overline{OM}$ (3)	* SHUE D
$^{\circ}$ $\angle H \cong \angle M$ (A)	* Subtrection Prop (steps 6,7) "IF DS, then D
10. AHEKELAMOJ	10. ASA(5,8,9)
" RE ~ JO	" CPCTC
30	

