3.6 Notes: "Types of Triangles"

GEOMETRY 3.6
Types of Triangles

- There are 2 ways to classify triangles, by sides and by angles
- For each definition below, rewrite in if-then form on the line below. Answer any questions

Classify by sides.
Scalene Δ - a triangle in which no 2 sides are congruent
Cong: If a triangle is scalene, then no 2 of its sides are congrats.

2) Isosceles Δ-a triangles in which at least 2 sides are congruent.

Cons: If a triangle is is vessels arg then at lest 2 of its sides are congrats.

Cord: It a trisugfe is equilaterd, then all 3 of its sides are congruent.

Question According to these definitions, is a triangle that is equilateral also isosceles? Question Is a triangle that is isosceles also equilateral?

Cod : Equiangular Δ - a triangle in which all 3 angles are congruent congruent two acute angles!

Question How many degrees are in the 3 angles of any triangle? 180°
Question How many degrees are in EACH angle of an equiangular triangle? $\frac{180}{3}=60^{\circ}$
(1) Acute Δ-a triangle in which all 3 angles are acute

Cong: If a triangle is acute, then all 3 angles are acute.

(3) Right Δ-a triangle in which one of the angles is a right angle.

Cod.
If a triangle is RIGHT, then one of the angles is a RigHT angle.

The sides which include the right angle are called legs. The side opposite the right angle is called the hypotenuse. The hypotenuse is always the longest side of any right triangle.

Question: Can a triangle have 2 right angles? Explain. No, the 50 m of all $\frac{3}{2}$ a n les is 18 C
(7) Obtuse Δ - a triangle in which one of the angles is obtuse.

Two $k+\Delta!s=180$, 50 you would n ' t have a third \& Sta.
Cod: If a triangle is obtuse, then.

Question: Why, in the definition for an obtuse triangle, can there be only one obtuse angle?

If 2 obtuse angles are added, then the sum will exceed the total for $\frac{3}{}$ angles in a Δ !

* See reason for

23
Ex: $91^{\circ}+91^{\circ}=182^{\circ}$ ho degrees 2 Rt $2 \sin a \triangle$ left for a third 4 ., excepts At r 4 ,tool.

Go over pg. 145 ($\mathbf{(1 2}$ and \#\#3) together as a class.
2) Classify by SIDE
a.

c.

b.

d.

3) Claxify by ANGLE
a.

b.

c.

d.

c.

f.

c.

f.

$$
\begin{aligned}
& \frac{1}{2}(m \angle K)=30 \cdot \cdot 2 \\
& \frac{1}{3}(m \angle M)=20 \cdot \cdot 3 \\
& \frac{1}{4}(m \angle O)=15 \cdot 4
\end{aligned}
$$

Class Examples:
1.) Given: $\triangle \mathrm{ABC}$ is equilateral, $\mathrm{AB}=18, \mathrm{BC}=\mathrm{x}+10$, and $\mathrm{AC}=1 / 2 \mathrm{y}-10$

$$
\begin{array}{ll}
x+10=18 \\
-10 \\
\hline x=8
\end{array} \quad \begin{aligned}
& \frac{1}{2} y+10=18 \\
& 2 \cdot \frac{1}{2} y=28.2 \\
& y=56
\end{aligned}
$$

Rimple 2) The average of the lengths of the sides of $\triangle \mathrm{DEF}$ is 20 . If $D E=x+7, E F=3 x-4$. and $D F=2 x+3$, how much longer than the average is the longest side?

$$
\begin{array}{rlr}
D E+E F+D F & =20 \\
3\left(\frac{6 x+6}{3}\right) & =20(3) \quad-23 \\
\frac{6 \times+6}{-6} & =\frac{-60}{6 x} & =54 \\
\frac{-6}{6} \\
x & =9
\end{array}
$$

Example 3) How many different isosceles triangles can you find that have sides that are whole number lengths and that have a perimeter of 24?

$$
\begin{aligned}
& \text { Yes! By definition ot } \\
& \text { wicmesc pis }
\end{aligned}
$$

"socles", min.
equilateral Δ is one, too!

Tricisle Inequality Principles :0

