2.8 Vertical Angles

After studying this section, you should be able to:

- Recognize opposite rays
- Recognize opposite angles

Definitions:

Opposite Rays - two collinear rays that share the same endpoint and extend in opposite directions (Together, they form a straight angle!)

Vertical Angles - the non-adjacent angles formed when two lines intersect. The rays forming the sides of one and the rays forming the sides of the other are "opposite rays."

Note: In the old days some teachers referred to these as opposite angles because they are the ones directly across from each other when the two lines intersect.

Thm: Vertical angles are congruent

That is the best part of vertical angles, they always remain congruent.

$$
\angle 1 \cong \angle 2 \text { and } \angle 3 \cong \angle 4
$$

This relationship can be proven, so it is called the Vertical Angle Theorem.

Proving the Th ${ }^{m}$ Example:

Given: $\Varangle 1$ and $\Varangle 2$ are a pair of vertical angles

Prove: $\Varangle 1 \cong \Varangle 2$

Statements	Reasons
1. $\Varangle 1$ and $\Varangle 2$ are vertical angles	1. Given
2. Diagram as shown	2. Given
3. $\Varangle 1+\Varangle 3=$ a straight angle (also known as a "linear pair")	3. Assumed from diagram
4. $\Varangle 2+\Varangle 3=$ a straight angle (also known as a "linear pair")	4. Assumed from diagram
5. $\Varangle 1$ and $\Varangle 3$ are supplementary	5. If two angles form a straight angle, then they are supplements
$6 . ~$	and $\Varangle 3$ are supplementary
$7 . ~$	6. Same as 5 \cong

$\boldsymbol{B T W}$: You MAY assume vertical angles from a diagram! Add that to your list of allowable assumptions immediately!

These 2 properties and the Vertical Angle Theorem are used a lot, so please do the homework on this section and get well acquainted with them!

