2.5 Addition and Subtraction Properties

Lesson Objective After studying this section, you will be able to:

- Apply the addition properties of segments and angles
- Apply the subtraction properties of segments and angles

Recognizing when to use addition and subtraction properties can be easy as long as you look to see whether you are starting with

1) large angles or segments and ending with smaller
2) or the reverse.

Segment Congruence by Addition Property

Theorem 8: If a segment is added to two congruent segments, the sums are congruent.

Theorem 10: If congruent segments are added to congruent segments then their sums are congruent.

Example: Suppose you are given: $\mathrm{AD} \cong \mathrm{EC}$ and $\mathrm{BD} \cong \mathrm{BE}$. conclusion: ?
Then $\boldsymbol{A B} \cong \boldsymbol{B C}$ (by addition property of segments)

The Addition Properties work in a similar way for ANGLES:

Theorem 9: If an angle is added to two congruent angles, the sums are congruent.

Theorem 11: If congruent angles are added to congruent angles, the sums are congruent.

Example:

(Think . . .) If two pair of adjacent congruent angles are added together then the resulting angles must be congruent.

$$
\begin{aligned}
& \angle B A E \cong \angle B C D \text { and } \angle \mathrm{EAC} \cong \angle \mathrm{DCA} \text { then } \\
& \angle \mathrm{BAC} \cong \angle \mathrm{BCA}
\end{aligned}
$$

Subtraction is the reverse process.
(Think . . .) If you start with two large congruent angles and subtract away two smaller congruent angles, the measures you are left with will be congruent.

Again, using the picture above but with subtraction in mind:

$$
\begin{aligned}
& \angle \mathrm{BAC} \cong \angle \mathrm{BCA} \text { and } \angle \mathrm{EAC} \cong \angle \mathrm{DCA} \text { then } \\
& \angle B A E \cong \angle B C D
\end{aligned}
$$

Notice that: $\angle \mathrm{BAC}-\angle \mathrm{EAC}=\angle B A E$ and $\angle \mathrm{BCA}-\angle \mathrm{DCA}=\angle B C D$

Theorem 12: If a segment (or angle) is subtracted from congruent segments (or angles), the differences are congruent.

Theorem 13: If congruent segments (or angles) are subtracted from congruent segments (or angles), the differences are congruent.

Sometimes you are adding the same segment or angle to both pieces.

Example of adding the same ANGLE:

Since $\Varangle \boldsymbol{B A E}(\underset{\gamma}{ })$ is being added to two angles that were said to be congruent in the first place (Σ), the resulting angles after the addition are also congruent.

Using the Addition and Subtraction Properties in Proofs:

1. An addition property is used whenever the resulting segments (or angles) are greater than what was given.
2. A subtraction property was used whenever the resulting segments (or angles) are smaller than those that were given.

