2.4 Congruent Supplements and Complements.

Objective: Prove angles congruent by means of FOUR new theorems

Supplementary Angle Theorems

Theorem 4: If angles are supplementary to the same angle, then they are congruent.
Theorem 5: If angles are supplementary to congruent angles, then they are congruent.

Proof of Th ${ }^{\mathrm{m}}$ 5: Supplements to Congruent Angles are Congruent

Statements	Reasons
1. $\Varangle 1$ is supplementary to $\Varangle 2$	1. Given
2. $\ddagger 3$ is supplementary to $\Varangle 4$	2. Given
3. $\mathrm{m} \Varangle 1+\mathrm{m} \Varangle 2=180, \mathrm{~m} \Varangle 3+\mathrm{m} \Varangle 4=180$	3. If 2 ¢ S are supp, then their sum $=180$
4. $\mathrm{m} \Varangle 1+\mathrm{m}$ ¢ $2=m \not \leq 3+m \Varangle 4$	4. Substitution $(180=180)$
5. $\mathrm{m} \Varangle 2=\mathrm{m} \Varangle 3$	5. Given
6. $\mathrm{m} \Varangle 1=\mathrm{m} \Varangle 4$	6. Subtraction Property
7. $¢ 1 \cong \Varangle 4$	7. If two angles have the same measure, then they are congruent

Complementary Angle Theorems

Theorem 6: If angles are complementary to the same angle, then they are congruent.
Theorem 7: If angles are complementary to congruent angles, then they are congruent.
Proof of $\mathbf{T h}^{\mathbf{m}}$ 6: Complements to the Same Angle are Congruent

Given: $\Varangle \mathrm{A}$ is complementary to $\Varangle \mathrm{B}$ $\Varangle C$ is complementary to $\Varangle B$
Prove: $\Varangle \mathrm{A} \cong \Varangle \mathrm{C}$

Statements	Reasons
1. $\Varangle \mathrm{A}$ is complementary to $\Varangle \mathrm{B}$	1. Given
2. $\Varangle \mathrm{C}$ is complementary to $\Varangle \mathrm{B}$	2. Given
3. $\mathrm{m} \Varangle \mathrm{A}+\mathrm{m} \Varangle \mathrm{B}=90 ; \mathrm{m} \Varangle \mathrm{C}+\mathrm{m} \Varangle \mathrm{B}=90$	3. If $2 \Varangle$ s are comp, then their sum $=90$
4. $\mathrm{m} \Varangle \mathrm{B}=\mathrm{m} \Varangle \mathrm{B}$	4. Reflexive Property
5. $\mathrm{m} \Varangle \mathrm{A}=\mathrm{m} \Varangle \mathrm{C} \longleftarrow$	5. Subtraction Property $(90-m \nleftarrow \mathrm{~B})$
6. $\Varangle \mathrm{A} \cong \Varangle \mathrm{C}$	6. If two angles have the same measure, then they are congruent.

