### 10.4 Secants \& Tangats Worksheet: 10.4

Defn: a secant is a line that intersects a circle at exactly 2 points. (note: every secant contains a chord)
Defn: A tangent s a line that intersects a circle at exactly 1 point, called the point of tangency or the point of contact


Postulate: If a radius is drawn to the point of contact, then it is perpendicular to the tangent.

1. For the 3 circles below, draw a radius to the point of contact, then name the right angles formed.


Two-Tkngent Ohm


Ice-cream cone Theorem: if 2 tangent segments are drawn to a circle from a common exterior point,
Given: $\odot \bigcirc$;
$\overline{\mathrm{BA}}$ and $\overline{\mathrm{BC}}$ are tangent segments.
Prove: $\overline{\mathrm{BA}} \cong \overline{\mathrm{BC}}$ ) then they are $\equiv$.


L
H


14

The Famous "Walk-Around "Proble mp

Problem: $\odot P$ is tangent to each side of MATH. $M A=16, A T=7, T H=9$. Find $M H$.


(BETTY GOOD) WAY WT:


Ridonkulously
( WWOR-OAH.

(10.4) Application of the "Th o-Tangent" Theorem /
2. Walk-around problems. Find the missing side of each quadrilateral.

$(26+35)-30=\sqrt{1 K}$ $61-30=$ (31
10.4 Common Tangent Procedure

1. Draw an appropriate diagram.
2. Draw the segment connecting their centers.
3. Draw the radii to the points of contact.
4. Through the center of the smaller circle, draw a line parallel to the common tangent.
5. Extend any radius if necessary to obtain right triangles and rectangle.
6. Use the Pythagorean Theorem and properties of a rectangle.

Sample problems. Draw a clear diagram for each problem and solve.

1. Circles O and P are tangent to each other and have a common external tangent $\overline{\mathrm{AB}}$. I

If the radius of $O O$ is 8 find the radius of $O P$ is 18 f find the length of the common tangent. I


$$
\begin{aligned}
& 18-8=107 \\
& \frac{10}{2} \frac{x}{2} \frac{26}{2} \\
& 5-12-13 \\
& \text { Family! }
\end{aligned}
$$

2. Circles $O$ and $\Gamma$ have a common internal tangent. The radius of $\odot O$ is $I$ and the radius of $O P$ is 2.1 If the distance between their centers if 5 , hind the length of the common tangent./

3. Circles $O$ and $P$ have a common external tangent. Their centers are 39 cm apart. If the radius of the smaller circle is 25 ind the length of the common tangent is 36 . find the radius of the larger circle.


$$
\begin{aligned}
& r=25+15 \\
& r=40 \mathrm{~cm}
\end{aligned}
$$



$$
\frac{x}{3}=5 \quad \therefore x=15
$$

