
Theorem: If 2 chords are equidistant from the center of a circle, then they are congruent.

Theorem: If 2 chords are congruent, then they are equidistant from the center.

1. A rectangle whose dimensions are 6 by 8 is inscribed in a circle. Find the area of the circle in terms of pi. $A = \pi r^2 \qquad r = 5$ $\pi (5u)^2$

2. An equilateral triangle is inscribed in a circle. If the perimeter of the triangle is $12\sqrt{3}$, find the area of the circle in terms of pi $5 = 12\sqrt{3} = 4\sqrt{3}$

3. A regular hexagon is inscribed in a circle. If the perimeter of the hexagon is 54, find the circumference of the circle in terms of pil

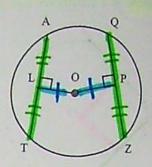
$$E = \frac{360}{6} = 60$$
. $S = \frac{54}{6} = 9$
 $I = 180 - 60 = 120$.

5 C= 277

Geometry: 10.2 - Congruent Chords

Theorems:

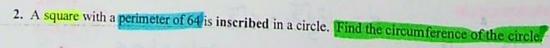
Chords in a circle are ≅

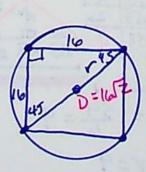

Chords are equidistant from center

Example on diagram:

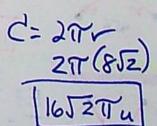
 $AT \cong QZ$

LO≅OP

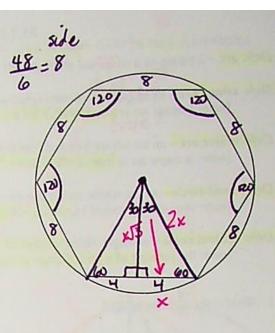


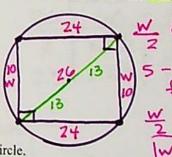

1. Given: $\bigcirc O$, LO = OM = 8, EF = 3x + 6, LZ = 2x - 1

Find: a) EF =
$$\frac{3}{3}$$
 X + $\frac{4}{9}$ b) the area of $\frac{60}{3}$


$$F = DZ$$

$$3x+6=2(2x-1)$$


V= 852


- 3. A regular hexagon with a perimeter of 48 is inscribed in a circle.
- a) How far is the center from each side?

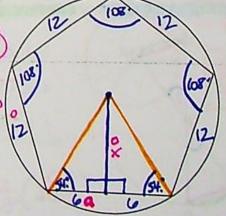
30 X	160 xJ3	90 2K
4	(4/3)	8
	(a)	

b) Find the area of the circle.

4. A rectangle with a length of 24 is inscribed in a circle with an area of 169π . Find the width, perimeter, and area of the rectangle.

regular pentagon with a perimeter of 60 is inscribed in a circle. To the nearest hundredth, find the distance from the center to

n=5


5=60 = 12u

 $E = \frac{360}{5} = 72$

T= 180-72 108.

 $\tan 54 = \frac{x}{6}$ $x = 6(\tan 54)$

X ~ 8.26 u

